2021-2022年寒假学习进度17

今天学习mapreduce:

切片与 MapTask 并行度决定机制
1)问题引出
MapTask 的并行度决定 Map 阶段的任务处理并发度,进而影响到整个 Job 的处理速度。
思考:1G 的数据,启动 8 个 MapTask,可以提高集群的并发处理能力。那么 1K 的数
据,也启动 8 个 MapTask,会提高集群性能吗?MapTask 并行任务是否越多越好呢?哪些因
素影响了 MapTask 并行度?
2)MapTask 并行度决定机制
数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行
存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。
Job 提交流程源码详解
waitForCompletion()
submit();
// 1 建立连接
connect();
// 1)创建提交 Job 的代理
new Cluster(getConfiguration());
// (1)判断是本地运行环境还是 yarn 集群运行环境
initialize(jobTrackAddr, conf);
// 2 提交 job
submitter.submitJobInternal(Job.this, cluster)
// 1)创建给集群提交数据的 Stag 路径
Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
// 2)获取 jobid ,并创建 Job 路径
JobID jobId = submitClient.getNewJobID();
// 3)拷贝 jar 包到集群
copyAndConfigureFiles(job, submitJobDir);
rUploader.uploadFiles(job, jobSubmitDir);
// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);
maps = writeNewSplits(job, jobSubmitDir);
input.getSplits(job);
// 5)向 Stag 路径写 XML 配置文件
writeConf(conf, submitJobFile);
conf.writeXml(out);
// 6)提交 Job,返回提交状态
status = submitClient.submitJob(jobId, submitJobDir.toString(),
job.getCredentials());
posted @ 2022-01-17 19:16  哦心有  阅读(44)  评论(0编辑  收藏  举报