Black And White(DFS+剪枝)

Black And White

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 3937    Accepted Submission(s): 1082
Special Judge


Problem Description
In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
— Wikipedia, the free encyclopedia

In this problem, you have to solve the 4-color problem. Hey, I’m just joking.

You are asked to solve a similar problem:

Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly ci cells.

Matt hopes you can tell him a possible coloring.
 

 

Input
The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.

For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).

The second line contains K integers ci (ci > 0), denoting the number of cells where the i-th color should be used.

It’s guaranteed that c1 + c2 + · · · + cK = N × M .
 

 

Output
For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1). 

In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.

If there are multiple solutions, output any of them.
 

 

Sample Input
4
1 5 2
4 1
3 3 4
1 2 2 4
2 3 3
2 2 2
3 2 3
2 2 2
Sample Output
Case #1:
NO
Case #2:
YES
4 3 4
2 1 2
4 3 4
Case #3:
YES
1 2 3
2 3 1
Case #4:
YES
1 2
2 3
3 1
 
 
//题意:第一行一个 T ,然后3个整数 n,m,k 代表有个 n 行 m 列的矩阵,k 代表有k种颜色,然后是 k 种颜色分别有多少个
要用这些颜色涂满矩阵,相邻颜色不能相同,问能否填出
 
DFS+剪枝,剪枝就是,如果有一种颜色比剩下的格子+1的一半还多的话,就 return
 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <string.h>
 4 #include <stdlib.h>
 5 #include <math.h>
 6 #include <algorithm>
 7 #include <map>
 8 #include <stack>
 9 #include <queue>
10 #include <set>
11 #include <vector>
12 using namespace std;
13 #define LL long long
14 #define PI acos(-1.0)
15 #define lowbit(x) (x&(-x))
16 #define INF 0x7f7f7f7f      // 21 E
17 #define MEM 0x7f            // memset 都变为 INF
18 #define MOD 4999            //
19 #define eps 1e-9            // 精度
20 #define MX  10         // 数据范围
21 
22 int read() {    //输入外挂
23     int res = 0, flag = 0;
24     char ch;
25     if((ch = getchar()) == '-') flag = 1;
26     else if(ch >= '0' && ch <= '9') res = ch - '0';
27     while((ch = getchar()) >= '0' && ch <= '9') res = res * 10 + (ch - '0');
28     return flag ? -res : res;
29 }
30 // code... ...
31 int n,m,k;
32 int ok;
33 int color[MX*MX];
34 int num[MX][MX];
35 
36 void dfs(int x,int y)
37 {
38     if (x>n) ok=1;
39     for (int i=1;i<=k;i++)
40     {
41         int remain = n*m-((x-1)*m+y-1)+1;
42         if (color[i]>remain/2) return;
43     }
44     for (int i=1;i<=k;i++)
45     {
46         if (color[i]>0&&num[x-1][y]!=i&&num[x][y-1]!=i)
47         {
48             num[x][y]=i;
49             color[i]--;
50             if (y==m) dfs(x+1,1);
51             else dfs(x,y+1);
52             color[i]++;
53             if (ok) return;
54         }
55     }
56 }
57 
58 int main()
59 {
60     int T=read();
61     for (int cnt=1;cnt<=T;cnt++)
62     {
63         n=read();m=read();k=read();
64         for (int i=1;i<=k;i++)
65             color[i]=read();
66         ok = 0;
67         memset(num,0,sizeof(num));
68         dfs(1,1);
69         printf("Case #%d:\n",cnt);
70         if (ok)
71         {
72             printf("YES\n");
73             for (int i=1;i<=n;i++)
74             {
75                 for (int j=1;j<m;j++)
76                     printf("%d ",num[i][j]);
77                 printf("%d\n",num[i][m]);
78             }
79         }
80         else printf("NO\n");
81     }
82     return 0;
83 }
View Code

 

 
posted @ 2017-04-27 19:52  happy_codes  阅读(230)  评论(0编辑  收藏  举报