洛咕P4180 严格次小生成树

鸽了很久的一道题(?)貌似是去年NOIP前听的emm...

首先我们分析一下最小生成树的性质

我们kruskal建树的时候呢是从小到大贪心加的边,这个的证明用到拟阵。(我太菜了不会)

首先我们不存在连接非树边比当前优的情况。

emm我们好像也就用这一条性质就够了。

 

步入正题

根据我们刚刚说的性质,我们可以枚举每一条边,使它和原来的树边形成一个环,然后我们需要求环上最大值,让我们的非树边替换掉这个边形成新的生成树。很显然这条边不会小于最大边,因为如果小于最大边的话,我们用这条边替换掉最大边会形成更小的生成树。如果这条边刚好等于最大边的话,那么我们求出来的不是严格次小生成树,而是非严格,因为两棵树的边权和相等。那么如果我们的非树边和最大值相等我们就不考虑了嘛(?)很显然不可以,因为我们可能有非树边-次大边更优的情况。所以我们维护链上最大值和次大值就可以啦。

Step1:建立最小生成树(这个很显然嘛,既然要求严格次小生成树,你肯定得先有棵树嘛)

Step2:处理生成树信息。

Step3:枚举每条非树边更新答案。

 

我来解释一下处理生成树信息都有啥。我们根据刚刚说的,我们需要维护链上最大值和次大值以及求LCA。这一步可以使用许多做法。我用的是倍增,然后树链剖分和LCT都是可以维护的。我才不想写LCT呢(傲娇脸)

容易错的地方的话我们一定要注意维护的次大值要严格小于最大值。

 

然后就到更新答案了。我们枚举的非树边有两种可能,横叉边or返祖边。分别讨论一下环的形态求链上比它严格小的最大值就可以了。

 

竟然1Abook思议

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 101000
#define maxm 301000
#define lgn 18
#define ll long long
#define inf 2002122520021225ll
using namespace std;

int f[maxn][lgn+2],mx[maxn][lgn+2],sc[maxn][lgn+2];
struct edge{int u,v,val;}e[maxm];
struct Edge{int to,lt,val;}E[maxn<<1];
int in[maxn],cnt,dep[maxn];bool used[maxm];
bool cmp(edge a,edge b){return a.val<b.val;}
int fa[maxn],n,m;ll sum,ans;bool vis[maxn];

void add(int x,int y,int v)
{
	E[++cnt].lt=in[x];E[cnt].to=y;E[cnt].val=v;in[x]=cnt;
	E[++cnt].lt=in[y];E[cnt].to=x;E[cnt].val=v;in[y]=cnt;
}

int find(int x)
{
	int i=x,j;
	while(fa[x]!=x)	x=fa[x];
	while(i!=x)	j=fa[i],fa[i]=x,i=j;
	return x;
}

void dfs(int x)
{
	vis[x]=1;
	for(int i=1;i<=lgn;i++)
	{
		f[x][i]=f[f[x][i-1]][i-1];
		mx[x][i]=max(mx[x][i-1],mx[f[x][i-1]][i-1]);
		sc[x][i]=max(sc[x][i-1],sc[f[x][i-1]][i-1]);
		if(mx[x][i-1]>mx[f[x][i-1]][i-1])
			sc[x][i]=max(sc[x][i],mx[f[x][i-1]][i-1]);
		else if(mx[x][i-1]<mx[f[x][i-1]][i-1])
			sc[x][i]=max(sc[x][i],mx[x][i-1]);
	}
	for(int i=in[x];i;i=E[i].lt)
	{
		int v=E[i].to;
		if(vis[v])	continue;
		f[v][0]=x;mx[v][0]=E[i].val;dep[v]=dep[x]+1;dfs(v);
	}
}

int jump(int x,int len)
{
	for(int i=lgn;~i;i--)
		if(len&(1<<i))
			x=f[x][i];
	return x;
}

int LCA(int x,int y)
{
	if(dep[x]<dep[y])	swap(x,y);
	x=jump(x,dep[x]-dep[y]);
	if(x==y)	return x;
	for(int i=lgn;~i;i--)
		if(f[x][i]^f[y][i])
			x=f[x][i],y=f[y][i];
	return f[x][0];
}

int getlink(int x,int len,int mm)
{
	int qwq=0;
	for(int i=lgn;~i;i--)
		if(len&(1<<i))
		{
			if(mx[x][i]==mm)	qwq=max(qwq,sc[x][i]);
			else	qwq=max(qwq,mx[x][i]);
			x=f[x][i];
		}
	return qwq;
}

void kruskal()
{
	int x,i,y,lca;
	sort(e+1,e+m+1,cmp);
	for(i=1;i<=n;i++)	fa[i]=i;
	for(i=1;i<=m;i++)
	{
		x=find(e[i].u),y=find(e[i].v);
		if(x!=y)
		{
			fa[x]=y;ans+=(ll)e[i].val;
			add(e[i].u,e[i].v,e[i].val);
			used[i]=1;
		}
	}
	dep[1]=1;dfs(1);sum=inf;
	for(i=1;i<=m;i++)
	{
		if(!used[i])
		{
			x=e[i].u;y=e[i].v;
			lca=LCA(x,y);
			if(dep[x]<dep[y])	swap(x,y);
			if(y==lca)	sum=min(sum,ans-getlink(x,dep[x]-dep[lca],e[i].val)+e[i].val);
			else	sum=min(sum,ans-max(getlink(x,dep[x]-dep[lca],e[i].val),getlink(y,dep[y]-dep[lca],e[i].val))+e[i].val);
		}
	}
	printf("%lld\n",sum);
}

int main()
{
	int i;
	scanf("%d%d",&n,&m);
	for(i=1;i<=m;i++)
		scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].val);
	kruskal();
	return 0;
}

 

posted @ 2018-09-26 19:59  寒雨微凝  阅读(129)  评论(0编辑  收藏  举报