Spark-Streaming DirectKafka count 案例
Spark-Streaming DirectKafka count 统计跟直接 kafka 统计类似,只不过这里使用的是 Direct 的方式,Direct方式使用的 kafka 低级API,不同的地方主要是在 createDirectStream这里。
统计代码如下
package com.hw.streaming import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming.kafka.KafkaUtils import org.apache.spark.streaming.{Seconds, StreamingContext} import scala.collection.mutable object DirectKafkaWordCount { def main(args: Array[String]): Unit = { if (args.length < 2) { System.err.println(s""" |Usage: DirectKafkaWordCount <brokers> <topics> | <brokers> is a list of one or more Kafka brokers | <topics> is a list of one or more kafka topics to consume from | """.stripMargin) System.exit(1) } val Array(brokers, topics) = args // Create context with 2 second batch interval val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount") val ssc = new StreamingContext(sparkConf, Seconds(60)) // Create direct kafka stream with brokers and topics val topicsSet = topics.split(",").toSet // smallest和from beiginning是一样的 val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers, "auto.offset.reset"->"smallest" ) // 生成Dstream val messages = KafkaUtils .createDirectStream[String, String, StringDecoder, StringDecoder]( ssc, kafkaParams, topicsSet) // Get the lines, split them into words, count the words and print val lines = messages.map(_._2) val words = lines.flatMap(_.split(",")(1)) val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _) wordCounts.print() // 开始计算 ssc.start() ssc.awaitTermination() } }
启动相关的 flume,kafka,参见: