MobileNet V2深入理解
转载:https://zhuanlan.zhihu.com/p/33075914 MobileNet V2 论文初读
转载:https://blog.csdn.net/wfei101/article/details/79334659 网络模型压缩和优化:MobileNet V2网络结构理解
转载: https://zhuanlan.zhihu.com/p/50045821 mobilenetv1和mobilenetv2的区别
MobileNetV2: Inverted Residuals and Linear Bottlenecks:连接:https://128.84.21.199/pdf/1801.04381.pdf
MobileNet v1中使用的Depthwise Separable Convolution是模型压缩的一个最为经典的策略,它是通过将跨通道的 卷积换成单通道的 卷积+跨通道的 卷积来达到此目的的。
MobileNet V2主要的改进有两点:
1、Linear Bottlenecks。因为ReLU的在通道数较少的Feature Map上有非常严重信息损失问题,所以去掉了小维度输出层后面的非线性激活层ReLU,保留更多的特征信息,目的是为了保证模型的表达能力。
2、Inverted Residual block。该结构和传统residual block中维度先缩减再扩增正好相反,因此shotcut也就变成了连接的是维度缩减后的feature map。
相同点:
- 都采用 Depth-wise (DW) 卷积搭配 Point-wise (PW) 卷积的方式来提特征。这两个操作合起来也被称为 Depth-wise Separable Convolution,之前在 Xception 中被广泛使用。这么做的好处是理论上可以成倍的减少卷积层的时间复杂度和空间复杂度。由下式可知,因为卷积核的尺寸 通常远小于输出通道数 ,因此标准卷积的计算复杂度近似为 DW + PW 组合卷积的 倍。由于Depthwise卷积的每个通道Feature Map产生且仅产生一个与之对应的Feature Map,也就是说输出层的Feature Map的channel数量等于输入层的Feature map的数量。因此
DepthwiseConv
不需要控制输出层的Feature Map的数量,因此并没有num_filters 这个参数,这个参数是和输入特征的channels数相等。
standard Convolution运算量:3*3跨通道运算 C*(C*(K**2)*x),其中x为一个kernel核在一个一维的输入特征上运算需要滑动的次数,这里假设卷积核个数和输入通道数都是C;
Depth-wise Separable Convolution运算量:单通道运算(C*(K**2)*x)+ 跨通道1*1卷积 C*(C*(1**2)*x),,其中x为一个kernel核在一个一维的输入特征上运算需要滑动的次数,这里假设卷积核个数和输入通道数都是C;
Depthwise卷积示意图(3个通道)
主要创新点:
1,Inverted residuals:V2 在 DW 卷积之前新加了一个 1*1 大小PW 卷积。这么做的原因,是因为 DW 卷积由于本身的计算特性决定它自己没有改变通道数的能力,上一层给它多少通道,它就只能输出多少通道。所以如果上一层给的通道数本身很少的话,DW 也只能很委屈的在低维空间提特征,因此效果不够好。现在 V2 为了改善这个问题,给每个 DW 之前都配备了一个 PW,专门用来升维,定义升维系数 t(而在v2中这个值一般是介于 之间的数,在作者的实验中, ),这样不管输入通道数 是多是少,经过第一个 PW 升维之后,DW 都是在相对的更高维 ( ) 进行着辛勤工作的。主要也是为了提取更多的通道信息,得到更多的特征线信息。
2,Linear bottlenecks:V2 去掉了第二个 PW 的激活函数,意思就是bottleneck的输出不接非线性激活层。论文作者称其为 Linear Bottleneck。这么做的原因,是因为作者认为激活函数在高维空间能够有效的增加非线性,而在低维空间时则会破坏特征,不如线性的效果好。由于第二个 PW 的主要功能就是降维,因此按照上面的理论,降维之后就不宜再使用 ReLU6 了。
再看看MobileNetV2的block 与ResNet 的block:主要不同之处就在于,ResNet是:压缩”→“卷积提特征”→“扩张”,MobileNetV2则是Inverted residuals, 即:“扩张”→“卷积提特征”→ “压缩
具体mobilenetV2的宏观结构如下:t表示每个bottleneck的PW层的expand系数,也就是channels扩张系数,
c表示每个bottleneck的输出通道数,也就是每个bottleneck输出的PW的channels数,用于降维,
n表示有多少个bottleneck连接在一起,s表示第一个bottleneck的DW层的stride,表示下采样;
附上mobilenetv2的源码,可以通过netscope: https://ethereon.github.io/netscope/#/editor查看:
name: "MOBILENET_V2" layer { name: "data" type: "ImageData" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true crop_size: 224 } image_data_param { source: "./train.txt" batch_size: 24 shuffle: false } } layer { name: "data" type: "ImageData" top: "data" top: "label" include { phase: TEST } transform_param { mirror: false crop_size: 224 } image_data_param { source: "./valid.txt" batch_size: 16 } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "msra" } } } layer { name: "conv1/bn" type: "BatchNorm" bottom: "conv1" top: "conv1/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv1/scale" type: "Scale" bottom: "conv1/bn" top: "conv1/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu1" type: "ReLU" bottom: "conv1/bn" top: "conv1/bn" } layer { name: "conv2_1/expand" type: "Convolution" bottom: "conv1/bn" top: "conv2_1/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv2_1/expand/bn" type: "BatchNorm" bottom: "conv2_1/expand" top: "conv2_1/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv2_1/expand/scale" type: "Scale" bottom: "conv2_1/expand/bn" top: "conv2_1/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu2_1/expand" type: "ReLU" bottom: "conv2_1/expand/bn" top: "conv2_1/expand/bn" } layer { name: "conv2_1/dwise" type: "Convolution" bottom: "conv2_1/expand/bn" top: "conv2_1/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 group: 32 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv2_1/dwise/bn" type: "BatchNorm" bottom: "conv2_1/dwise" top: "conv2_1/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv2_1/dwise/scale" type: "Scale" bottom: "conv2_1/dwise/bn" top: "conv2_1/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu2_1/dwise" type: "ReLU" bottom: "conv2_1/dwise/bn" top: "conv2_1/dwise/bn" } layer { name: "conv2_1/linear" type: "Convolution" bottom: "conv2_1/dwise/bn" top: "conv2_1/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv2_1/linear/bn" type: "BatchNorm" bottom: "conv2_1/linear" top: "conv2_1/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv2_1/linear/scale" type: "Scale" bottom: "conv2_1/linear/bn" top: "conv2_1/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "conv2_2/expand" type: "Convolution" bottom: "conv2_1/linear/bn" top: "conv2_2/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 96 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv2_2/expand/bn" type: "BatchNorm" bottom: "conv2_2/expand" top: "conv2_2/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv2_2/expand/scale" type: "Scale" bottom: "conv2_2/expand/bn" top: "conv2_2/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu2_2/expand" type: "ReLU" bottom: "conv2_2/expand/bn" top: "conv2_2/expand/bn" } layer { name: "conv2_2/dwise" type: "Convolution" bottom: "conv2_2/expand/bn" top: "conv2_2/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 96 bias_term: false pad: 1 kernel_size: 3 group: 96 stride: 2 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv2_2/dwise/bn" type: "BatchNorm" bottom: "conv2_2/dwise" top: "conv2_2/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv2_2/dwise/scale" type: "Scale" bottom: "conv2_2/dwise/bn" top: "conv2_2/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu2_2/dwise" type: "ReLU" bottom: "conv2_2/dwise/bn" top: "conv2_2/dwise/bn" } layer { name: "conv2_2/linear" type: "Convolution" bottom: "conv2_2/dwise/bn" top: "conv2_2/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 24 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv2_2/linear/bn" type: "BatchNorm" bottom: "conv2_2/linear" top: "conv2_2/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv2_2/linear/scale" type: "Scale" bottom: "conv2_2/linear/bn" top: "conv2_2/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "conv3_1/expand" type: "Convolution" bottom: "conv2_2/linear/bn" top: "conv3_1/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 144 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv3_1/expand/bn" type: "BatchNorm" bottom: "conv3_1/expand" top: "conv3_1/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv3_1/expand/scale" type: "Scale" bottom: "conv3_1/expand/bn" top: "conv3_1/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu3_1/expand" type: "ReLU" bottom: "conv3_1/expand/bn" top: "conv3_1/expand/bn" } layer { name: "conv3_1/dwise" type: "Convolution" bottom: "conv3_1/expand/bn" top: "conv3_1/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 144 bias_term: false pad: 1 kernel_size: 3 group: 144 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv3_1/dwise/bn" type: "BatchNorm" bottom: "conv3_1/dwise" top: "conv3_1/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv3_1/dwise/scale" type: "Scale" bottom: "conv3_1/dwise/bn" top: "conv3_1/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu3_1/dwise" type: "ReLU" bottom: "conv3_1/dwise/bn" top: "conv3_1/dwise/bn" } layer { name: "conv3_1/linear" type: "Convolution" bottom: "conv3_1/dwise/bn" top: "conv3_1/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 24 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv3_1/linear/bn" type: "BatchNorm" bottom: "conv3_1/linear" top: "conv3_1/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv3_1/linear/scale" type: "Scale" bottom: "conv3_1/linear/bn" top: "conv3_1/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_3_1" type: "Eltwise" bottom: "conv2_2/linear/bn" bottom: "conv3_1/linear/bn" top: "block_3_1" } layer { name: "conv3_2/expand" type: "Convolution" bottom: "block_3_1" top: "conv3_2/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 144 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv3_2/expand/bn" type: "BatchNorm" bottom: "conv3_2/expand" top: "conv3_2/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv3_2/expand/scale" type: "Scale" bottom: "conv3_2/expand/bn" top: "conv3_2/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu3_2/expand" type: "ReLU" bottom: "conv3_2/expand/bn" top: "conv3_2/expand/bn" } layer { name: "conv3_2/dwise" type: "Convolution" bottom: "conv3_2/expand/bn" top: "conv3_2/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 144 bias_term: false pad: 1 kernel_size: 3 group: 144 stride: 2 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv3_2/dwise/bn" type: "BatchNorm" bottom: "conv3_2/dwise" top: "conv3_2/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv3_2/dwise/scale" type: "Scale" bottom: "conv3_2/dwise/bn" top: "conv3_2/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu3_2/dwise" type: "ReLU" bottom: "conv3_2/dwise/bn" top: "conv3_2/dwise/bn" } layer { name: "conv3_2/linear" type: "Convolution" bottom: "conv3_2/dwise/bn" top: "conv3_2/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv3_2/linear/bn" type: "BatchNorm" bottom: "conv3_2/linear" top: "conv3_2/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv3_2/linear/scale" type: "Scale" bottom: "conv3_2/linear/bn" top: "conv3_2/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "conv4_1/expand" type: "Convolution" bottom: "conv3_2/linear/bn" top: "conv4_1/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 192 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_1/expand/bn" type: "BatchNorm" bottom: "conv4_1/expand" top: "conv4_1/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_1/expand/scale" type: "Scale" bottom: "conv4_1/expand/bn" top: "conv4_1/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu4_1/expand" type: "ReLU" bottom: "conv4_1/expand/bn" top: "conv4_1/expand/bn" } layer { name: "conv4_1/dwise" type: "Convolution" bottom: "conv4_1/expand/bn" top: "conv4_1/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 192 bias_term: false pad: 1 kernel_size: 3 group: 192 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv4_1/dwise/bn" type: "BatchNorm" bottom: "conv4_1/dwise" top: "conv4_1/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_1/dwise/scale" type: "Scale" bottom: "conv4_1/dwise/bn" top: "conv4_1/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu4_1/dwise" type: "ReLU" bottom: "conv4_1/dwise/bn" top: "conv4_1/dwise/bn" } layer { name: "conv4_1/linear" type: "Convolution" bottom: "conv4_1/dwise/bn" top: "conv4_1/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_1/linear/bn" type: "BatchNorm" bottom: "conv4_1/linear" top: "conv4_1/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_1/linear/scale" type: "Scale" bottom: "conv4_1/linear/bn" top: "conv4_1/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_4_1" type: "Eltwise" bottom: "conv3_2/linear/bn" bottom: "conv4_1/linear/bn" top: "block_4_1" } layer { name: "conv4_2/expand" type: "Convolution" bottom: "block_4_1" top: "conv4_2/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 192 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_2/expand/bn" type: "BatchNorm" bottom: "conv4_2/expand" top: "conv4_2/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_2/expand/scale" type: "Scale" bottom: "conv4_2/expand/bn" top: "conv4_2/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu4_2/expand" type: "ReLU" bottom: "conv4_2/expand/bn" top: "conv4_2/expand/bn" } layer { name: "conv4_2/dwise" type: "Convolution" bottom: "conv4_2/expand/bn" top: "conv4_2/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 192 bias_term: false pad: 1 kernel_size: 3 group: 192 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv4_2/dwise/bn" type: "BatchNorm" bottom: "conv4_2/dwise" top: "conv4_2/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_2/dwise/scale" type: "Scale" bottom: "conv4_2/dwise/bn" top: "conv4_2/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu4_2/dwise" type: "ReLU" bottom: "conv4_2/dwise/bn" top: "conv4_2/dwise/bn" } layer { name: "conv4_2/linear" type: "Convolution" bottom: "conv4_2/dwise/bn" top: "conv4_2/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_2/linear/bn" type: "BatchNorm" bottom: "conv4_2/linear" top: "conv4_2/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_2/linear/scale" type: "Scale" bottom: "conv4_2/linear/bn" top: "conv4_2/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_4_2" type: "Eltwise" bottom: "block_4_1" bottom: "conv4_2/linear/bn" top: "block_4_2" } layer { name: "conv4_3/expand" type: "Convolution" bottom: "block_4_2" top: "conv4_3/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 192 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_3/expand/bn" type: "BatchNorm" bottom: "conv4_3/expand" top: "conv4_3/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_3/expand/scale" type: "Scale" bottom: "conv4_3/expand/bn" top: "conv4_3/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu4_3/expand" type: "ReLU" bottom: "conv4_3/expand/bn" top: "conv4_3/expand/bn" } layer { name: "conv4_3/dwise" type: "Convolution" bottom: "conv4_3/expand/bn" top: "conv4_3/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 192 bias_term: false pad: 1 kernel_size: 3 group: 192 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv4_3/dwise/bn" type: "BatchNorm" bottom: "conv4_3/dwise" top: "conv4_3/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_3/dwise/scale" type: "Scale" bottom: "conv4_3/dwise/bn" top: "conv4_3/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu4_3/dwise" type: "ReLU" bottom: "conv4_3/dwise/bn" top: "conv4_3/dwise/bn" } layer { name: "conv4_3/linear" type: "Convolution" bottom: "conv4_3/dwise/bn" top: "conv4_3/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_3/linear/bn" type: "BatchNorm" bottom: "conv4_3/linear" top: "conv4_3/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_3/linear/scale" type: "Scale" bottom: "conv4_3/linear/bn" top: "conv4_3/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "conv4_4/expand" type: "Convolution" bottom: "conv4_3/linear/bn" top: "conv4_4/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 384 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_4/expand/bn" type: "BatchNorm" bottom: "conv4_4/expand" top: "conv4_4/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_4/expand/scale" type: "Scale" bottom: "conv4_4/expand/bn" top: "conv4_4/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu4_4/expand" type: "ReLU" bottom: "conv4_4/expand/bn" top: "conv4_4/expand/bn" } layer { name: "conv4_4/dwise" type: "Convolution" bottom: "conv4_4/expand/bn" top: "conv4_4/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 384 bias_term: false pad: 1 kernel_size: 3 group: 384 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv4_4/dwise/bn" type: "BatchNorm" bottom: "conv4_4/dwise" top: "conv4_4/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_4/dwise/scale" type: "Scale" bottom: "conv4_4/dwise/bn" top: "conv4_4/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu4_4/dwise" type: "ReLU" bottom: "conv4_4/dwise/bn" top: "conv4_4/dwise/bn" } layer { name: "conv4_4/linear" type: "Convolution" bottom: "conv4_4/dwise/bn" top: "conv4_4/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_4/linear/bn" type: "BatchNorm" bottom: "conv4_4/linear" top: "conv4_4/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_4/linear/scale" type: "Scale" bottom: "conv4_4/linear/bn" top: "conv4_4/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_4_4" type: "Eltwise" bottom: "conv4_3/linear/bn" bottom: "conv4_4/linear/bn" top: "block_4_4" } layer { name: "conv4_5/expand" type: "Convolution" bottom: "block_4_4" top: "conv4_5/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 384 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_5/expand/bn" type: "BatchNorm" bottom: "conv4_5/expand" top: "conv4_5/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_5/expand/scale" type: "Scale" bottom: "conv4_5/expand/bn" top: "conv4_5/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu4_5/expand" type: "ReLU" bottom: "conv4_5/expand/bn" top: "conv4_5/expand/bn" } layer { name: "conv4_5/dwise" type: "Convolution" bottom: "conv4_5/expand/bn" top: "conv4_5/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 384 bias_term: false pad: 1 kernel_size: 3 group: 384 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv4_5/dwise/bn" type: "BatchNorm" bottom: "conv4_5/dwise" top: "conv4_5/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_5/dwise/scale" type: "Scale" bottom: "conv4_5/dwise/bn" top: "conv4_5/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu4_5/dwise" type: "ReLU" bottom: "conv4_5/dwise/bn" top: "conv4_5/dwise/bn" } layer { name: "conv4_5/linear" type: "Convolution" bottom: "conv4_5/dwise/bn" top: "conv4_5/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_5/linear/bn" type: "BatchNorm" bottom: "conv4_5/linear" top: "conv4_5/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_5/linear/scale" type: "Scale" bottom: "conv4_5/linear/bn" top: "conv4_5/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_4_5" type: "Eltwise" bottom: "block_4_4" bottom: "conv4_5/linear/bn" top: "block_4_5" } layer { name: "conv4_6/expand" type: "Convolution" bottom: "block_4_5" top: "conv4_6/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 384 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_6/expand/bn" type: "BatchNorm" bottom: "conv4_6/expand" top: "conv4_6/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_6/expand/scale" type: "Scale" bottom: "conv4_6/expand/bn" top: "conv4_6/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu4_6/expand" type: "ReLU" bottom: "conv4_6/expand/bn" top: "conv4_6/expand/bn" } layer { name: "conv4_6/dwise" type: "Convolution" bottom: "conv4_6/expand/bn" top: "conv4_6/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 384 bias_term: false pad: 1 kernel_size: 3 group: 384 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv4_6/dwise/bn" type: "BatchNorm" bottom: "conv4_6/dwise" top: "conv4_6/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_6/dwise/scale" type: "Scale" bottom: "conv4_6/dwise/bn" top: "conv4_6/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu4_6/dwise" type: "ReLU" bottom: "conv4_6/dwise/bn" top: "conv4_6/dwise/bn" } layer { name: "conv4_6/linear" type: "Convolution" bottom: "conv4_6/dwise/bn" top: "conv4_6/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_6/linear/bn" type: "BatchNorm" bottom: "conv4_6/linear" top: "conv4_6/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_6/linear/scale" type: "Scale" bottom: "conv4_6/linear/bn" top: "conv4_6/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_4_6" type: "Eltwise" bottom: "block_4_5" bottom: "conv4_6/linear/bn" top: "block_4_6" } layer { name: "conv4_7/expand" type: "Convolution" bottom: "block_4_6" top: "conv4_7/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 384 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_7/expand/bn" type: "BatchNorm" bottom: "conv4_7/expand" top: "conv4_7/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_7/expand/scale" type: "Scale" bottom: "conv4_7/expand/bn" top: "conv4_7/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu4_7/expand" type: "ReLU" bottom: "conv4_7/expand/bn" top: "conv4_7/expand/bn" } layer { name: "conv4_7/dwise" type: "Convolution" bottom: "conv4_7/expand/bn" top: "conv4_7/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 384 bias_term: false pad: 1 kernel_size: 3 group: 384 stride: 2 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv4_7/dwise/bn" type: "BatchNorm" bottom: "conv4_7/dwise" top: "conv4_7/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_7/dwise/scale" type: "Scale" bottom: "conv4_7/dwise/bn" top: "conv4_7/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu4_7/dwise" type: "ReLU" bottom: "conv4_7/dwise/bn" top: "conv4_7/dwise/bn" } layer { name: "conv4_7/linear" type: "Convolution" bottom: "conv4_7/dwise/bn" top: "conv4_7/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 96 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4_7/linear/bn" type: "BatchNorm" bottom: "conv4_7/linear" top: "conv4_7/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv4_7/linear/scale" type: "Scale" bottom: "conv4_7/linear/bn" top: "conv4_7/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "conv5_1/expand" type: "Convolution" bottom: "conv4_7/linear/bn" top: "conv5_1/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 576 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv5_1/expand/bn" type: "BatchNorm" bottom: "conv5_1/expand" top: "conv5_1/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_1/expand/scale" type: "Scale" bottom: "conv5_1/expand/bn" top: "conv5_1/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu5_1/expand" type: "ReLU" bottom: "conv5_1/expand/bn" top: "conv5_1/expand/bn" } layer { name: "conv5_1/dwise" type: "Convolution" bottom: "conv5_1/expand/bn" top: "conv5_1/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 576 bias_term: false pad: 1 kernel_size: 3 group: 576 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv5_1/dwise/bn" type: "BatchNorm" bottom: "conv5_1/dwise" top: "conv5_1/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_1/dwise/scale" type: "Scale" bottom: "conv5_1/dwise/bn" top: "conv5_1/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu5_1/dwise" type: "ReLU" bottom: "conv5_1/dwise/bn" top: "conv5_1/dwise/bn" } layer { name: "conv5_1/linear" type: "Convolution" bottom: "conv5_1/dwise/bn" top: "conv5_1/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 96 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv5_1/linear/bn" type: "BatchNorm" bottom: "conv5_1/linear" top: "conv5_1/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_1/linear/scale" type: "Scale" bottom: "conv5_1/linear/bn" top: "conv5_1/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_5_1" type: "Eltwise" bottom: "conv4_7/linear/bn" bottom: "conv5_1/linear/bn" top: "block_5_1" } layer { name: "conv5_2/expand" type: "Convolution" bottom: "block_5_1" top: "conv5_2/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 576 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv5_2/expand/bn" type: "BatchNorm" bottom: "conv5_2/expand" top: "conv5_2/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_2/expand/scale" type: "Scale" bottom: "conv5_2/expand/bn" top: "conv5_2/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu5_2/expand" type: "ReLU" bottom: "conv5_2/expand/bn" top: "conv5_2/expand/bn" } layer { name: "conv5_2/dwise" type: "Convolution" bottom: "conv5_2/expand/bn" top: "conv5_2/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 576 bias_term: false pad: 1 kernel_size: 3 group: 576 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv5_2/dwise/bn" type: "BatchNorm" bottom: "conv5_2/dwise" top: "conv5_2/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_2/dwise/scale" type: "Scale" bottom: "conv5_2/dwise/bn" top: "conv5_2/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu5_2/dwise" type: "ReLU" bottom: "conv5_2/dwise/bn" top: "conv5_2/dwise/bn" } layer { name: "conv5_2/linear" type: "Convolution" bottom: "conv5_2/dwise/bn" top: "conv5_2/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 96 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv5_2/linear/bn" type: "BatchNorm" bottom: "conv5_2/linear" top: "conv5_2/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_2/linear/scale" type: "Scale" bottom: "conv5_2/linear/bn" top: "conv5_2/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_5_2" type: "Eltwise" bottom: "block_5_1" bottom: "conv5_2/linear/bn" top: "block_5_2" } layer { name: "conv5_3/expand" type: "Convolution" bottom: "block_5_2" top: "conv5_3/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 576 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv5_3/expand/bn" type: "BatchNorm" bottom: "conv5_3/expand" top: "conv5_3/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_3/expand/scale" type: "Scale" bottom: "conv5_3/expand/bn" top: "conv5_3/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu5_3/expand" type: "ReLU" bottom: "conv5_3/expand/bn" top: "conv5_3/expand/bn" } layer { name: "conv5_3/dwise" type: "Convolution" bottom: "conv5_3/expand/bn" top: "conv5_3/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 576 bias_term: false pad: 1 kernel_size: 3 group: 576 stride: 2 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv5_3/dwise/bn" type: "BatchNorm" bottom: "conv5_3/dwise" top: "conv5_3/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_3/dwise/scale" type: "Scale" bottom: "conv5_3/dwise/bn" top: "conv5_3/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu5_3/dwise" type: "ReLU" bottom: "conv5_3/dwise/bn" top: "conv5_3/dwise/bn" } layer { name: "conv5_3/linear" type: "Convolution" bottom: "conv5_3/dwise/bn" top: "conv5_3/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 160 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv5_3/linear/bn" type: "BatchNorm" bottom: "conv5_3/linear" top: "conv5_3/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv5_3/linear/scale" type: "Scale" bottom: "conv5_3/linear/bn" top: "conv5_3/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "conv6_1/expand" type: "Convolution" bottom: "conv5_3/linear/bn" top: "conv6_1/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 960 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv6_1/expand/bn" type: "BatchNorm" bottom: "conv6_1/expand" top: "conv6_1/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_1/expand/scale" type: "Scale" bottom: "conv6_1/expand/bn" top: "conv6_1/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu6_1/expand" type: "ReLU" bottom: "conv6_1/expand/bn" top: "conv6_1/expand/bn" } layer { name: "conv6_1/dwise" type: "Convolution" bottom: "conv6_1/expand/bn" top: "conv6_1/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 960 bias_term: false pad: 1 kernel_size: 3 group: 960 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv6_1/dwise/bn" type: "BatchNorm" bottom: "conv6_1/dwise" top: "conv6_1/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_1/dwise/scale" type: "Scale" bottom: "conv6_1/dwise/bn" top: "conv6_1/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu6_1/dwise" type: "ReLU" bottom: "conv6_1/dwise/bn" top: "conv6_1/dwise/bn" } layer { name: "conv6_1/linear" type: "Convolution" bottom: "conv6_1/dwise/bn" top: "conv6_1/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 160 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv6_1/linear/bn" type: "BatchNorm" bottom: "conv6_1/linear" top: "conv6_1/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_1/linear/scale" type: "Scale" bottom: "conv6_1/linear/bn" top: "conv6_1/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_6_1" type: "Eltwise" bottom: "conv5_3/linear/bn" bottom: "conv6_1/linear/bn" top: "block_6_1" } layer { name: "conv6_2/expand" type: "Convolution" bottom: "block_6_1" top: "conv6_2/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 960 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv6_2/expand/bn" type: "BatchNorm" bottom: "conv6_2/expand" top: "conv6_2/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_2/expand/scale" type: "Scale" bottom: "conv6_2/expand/bn" top: "conv6_2/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu6_2/expand" type: "ReLU" bottom: "conv6_2/expand/bn" top: "conv6_2/expand/bn" } layer { name: "conv6_2/dwise" type: "Convolution" bottom: "conv6_2/expand/bn" top: "conv6_2/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 960 bias_term: false pad: 1 kernel_size: 3 group: 960 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv6_2/dwise/bn" type: "BatchNorm" bottom: "conv6_2/dwise" top: "conv6_2/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_2/dwise/scale" type: "Scale" bottom: "conv6_2/dwise/bn" top: "conv6_2/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu6_2/dwise" type: "ReLU" bottom: "conv6_2/dwise/bn" top: "conv6_2/dwise/bn" } layer { name: "conv6_2/linear" type: "Convolution" bottom: "conv6_2/dwise/bn" top: "conv6_2/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 160 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv6_2/linear/bn" type: "BatchNorm" bottom: "conv6_2/linear" top: "conv6_2/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_2/linear/scale" type: "Scale" bottom: "conv6_2/linear/bn" top: "conv6_2/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "block_6_2" type: "Eltwise" bottom: "block_6_1" bottom: "conv6_2/linear/bn" top: "block_6_2" } layer { name: "conv6_3/expand" type: "Convolution" bottom: "block_6_2" top: "conv6_3/expand" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 960 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv6_3/expand/bn" type: "BatchNorm" bottom: "conv6_3/expand" top: "conv6_3/expand/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_3/expand/scale" type: "Scale" bottom: "conv6_3/expand/bn" top: "conv6_3/expand/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu6_3/expand" type: "ReLU" bottom: "conv6_3/expand/bn" top: "conv6_3/expand/bn" } layer { name: "conv6_3/dwise" type: "Convolution" bottom: "conv6_3/expand/bn" top: "conv6_3/dwise" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 960 bias_term: false pad: 1 kernel_size: 3 group: 960 weight_filler { type: "msra" } engine: CAFFE } } layer { name: "conv6_3/dwise/bn" type: "BatchNorm" bottom: "conv6_3/dwise" top: "conv6_3/dwise/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_3/dwise/scale" type: "Scale" bottom: "conv6_3/dwise/bn" top: "conv6_3/dwise/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "relu6_3/dwise" type: "ReLU" bottom: "conv6_3/dwise/bn" top: "conv6_3/dwise/bn" } layer { name: "conv6_3/linear" type: "Convolution" bottom: "conv6_3/dwise/bn" top: "conv6_3/linear" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 320 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv6_3/linear/bn" type: "BatchNorm" bottom: "conv6_3/linear" top: "conv6_3/linear/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_3/linear/scale" type: "Scale" bottom: "conv6_3/linear/bn" top: "conv6_3/linear/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.000000001 } } layer { name: "conv6_4" type: "Convolution" bottom: "conv6_3/linear/bn" top: "conv6_4" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 1280 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv6_4/bn" type: "BatchNorm" bottom: "conv6_4" top: "conv6_4/bn" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } } layer { name: "conv6_4/scale" type: "Scale" bottom: "conv6_4/bn" top: "conv6_4/bn" param { lr_mult: 1.0 decay_mult: 0.0 } param { lr_mult: 1.0 decay_mult: 0.0 } scale_param { filler { value: 0.5 } bias_term: true bias_filler { value: 0 } l1_lambda: 0.001 } } layer { name: "relu6_4" type: "ReLU" bottom: "conv6_4/bn" top: "conv6_4/bn" } layer { name: "pool6" type: "Pooling" bottom: "conv6_4/bn" top: "pool6" pooling_param { pool: AVE global_pooling: true } } layer { name: "food_fc7" type: "Convolution" bottom: "pool6" top: "fc7" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { #num_output: 143 num_output: 43 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc7" bottom: "label" top: "loss" } layer { name: "top1/acc" type: "Accuracy" bottom: "fc7" bottom: "label" top: "top1/acc" include { phase: TEST } } layer { name: "top5/acc" type: "Accuracy" bottom: "fc7" bottom: "label" top: "top5/acc" include { phase: TEST } accuracy_param { top_k: 5 } }
posted on 2019-08-08 18:07 Sanny.Liu-CV&&ML 阅读(783) 评论(0) 编辑 收藏 举报