矩阵运算初级

话说我的markdown矩阵竟然炸了,只好换图片了,真是不爽

嗯,这玩意看着很难对吧,之前我还是这样想的。。直到看到了斐波那契公约数这道题

这道题一看我这种辣鸡就不会做啊,然后rqy告诉我这是傻逼题啊,我忽然就想起了以前听说过的矩阵乘。。然后懒惰的DDOSvoid大佬告诉我要做这道题,得先做斐波那契数列,要做斐波那契数列,得先做矩阵加速,要做矩阵加速,得先做矩阵快速幂。。于是,一个上午就这么过去了


回归正题

定义

什么是矩阵运算呢?

在理解这个问题前,我们先要知道什么是矩阵

百度百科给的定义如下

矩阵是一个按照长方阵列排列的复数或实数集合

复数实数什么的我们先不管,总之,矩阵就是一堆数,按照矩形排列形成的集合

那么,我们所需要记录的也就是它的长、宽以及矩阵中存储的元素

特殊的,长宽相等的矩阵我们定义它为方阵

当两个矩阵的长宽相等时,我们认为这两个矩阵为同型矩形

若矩阵为方阵,且对角线上的元素为1,其余均为0,则我们定义它为单位矩形,一个矩形与单位矩形相乘仍为原矩形

基本运算

矩阵的运算我们可以类比实数的运算来理解

在实数运算中,一般由进行运算的实数和运算符组成,运算符决定了运算类型

那么同样的,矩阵运算也是如此

加法运算

首先,我们来看加法运算

两个矩阵进行一般的加法运算的前提是两个矩阵为同型矩阵

我们只需要将对应位置的元素相加即可,如下图

在矩阵的加法运算中,满足交换律和结合律,也就是

\(A+B=B+A\)

\((A+B)+C=A+(B+C)\)

也许有人想问了,如果我想让两个非同型矩形进行相加可不可以实现呢?

答案是可以的,这种运算是被支持的,我们称这种运算为直和

但由于这种运算使用较少,且与本文关系不大,我们在此不多做解释,感兴趣的朋友可以阅览下面的链接,相信它会给你一个满意的答复

矩阵加法

减法运算

在实数运算中,减法为加法的逆运算,同样的,在矩阵运算中也是如此,如下图

数乘

在实数运算中我们并没有数乘这种运算(毕竟本身就是数,直接叫乘法了)

所以在数乘运算中,我们类比向量来进行理解

在数乘向量运算中,只需要将向量中的每个元素乘上那个数就可以了

数乘矩阵也是如此,如图

数乘矩阵运算中,满足如下运算律

\((\lambda\mu)A=\lambda(\mu A)\)

\((\lambda+\mu)A=\lambda A+\mu A\)

\(\lambda(A+B)=\lambda A+\lambda B\)

矩阵乘法(矩阵乘矩阵)

在向量乘向量的运算中,是将每个元素与它对应的元素相乘,求所有乘积之和

那么矩阵乘矩阵是不是就是两个同型矩阵的对应元素相乘呢?

图样图森破

两个矩阵相乘的前提是前一个矩阵的列数等于后一个矩阵的行数

举个栗子,\(A\)\(n*k\)矩阵,\(B\)\(k*m\)矩阵,\(C\)\(m*n\)矩阵,那么\(A\)可以与\(B\)相乘,\(B\)可以与\(C\)相乘,\(C\)可以与\(A\)相乘,其他均不成立

我们知道了什么情况下两个矩阵可以相乘,那么他们怎么相乘呢?不讲每个对应位置相乘还能怎么乘呢?

\(A\)\(n*k\)矩阵,\(B\)\(k*m\)矩阵,那么它们的乘积\(C\)则为一个\(n*m\)矩阵

\(C_{i,j}=\sum_{r=1}^kA_{i,r}*B_{r,j}\)

是不是不太好理解,没关系看看图就知道了

在矩阵乘法中满足以下运算律:

\((AB)C=a(BC)\)

\((A+B)C=AC+BC\)

\(C(A+B)=CA+CB\)

在普通的乘法中,一个数乘1还是等于它本身,在矩阵乘法中也有这么一个“1”,它就是单位矩阵

不同于普通乘法中的单位1,对于不同矩阵他们的单位矩阵大小是不同的

对于\(n*m\)的矩阵,它的单位矩阵大小为\(m*m\),对于\(m*n\)的矩阵,它的单位矩阵大小为\(n*n\)

也就是说单位矩阵都是正方形的,这是因为只有正方形的矩阵能保证结果和前一个矩阵形状相同

单位矩阵的元素非0即1,从左上角到右下角的对角线上元素皆为1,其他皆为0


感谢您的阅览,走之前不妨点个赞啊

posted @ 2018-10-15 10:45  子谦。  阅读(1167)  评论(3编辑  收藏  举报
Live2D
//雪