数据结构化与保存

1. 将新闻的正文内容保存到文本文件。

def file(content):
    f = open('news.txt','a',encoding='utf-8')
    f.write(content)
    f.close()

2. 将新闻数据结构化为字典的列表:

  • 单条新闻的详情-->字典news
  • 一个列表页所有单条新闻汇总-->列表newsls.append(news)
  • 所有列表页的所有新闻汇总列表newstotal.extend(newsls)
    import requests
    from bs4 import BeautifulSoup
    import datetime
    import re
    import pandas
    
    
    def getClickCount(newUrl):
        re1 = re.search('\_(.*).html',newUrl)
        re2 = re.match('http://news.gzcc.cn/html/2018/xiaoyuanxinwen_(.*).html',newUrl)
        i = re1.group(1).split('/')[-1]
        cUrl = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'.format(i)
        res = requests.get(cUrl)
        res2 = int(res.text.split(".html")[-1].lstrip("('").rstrip("');"))
        return(res2)
    
    def file(content):
        f = open('news.txt','a',encoding='utf-8')
        f.write(content)
        f.close()
    
    def getInformation(a1):
        res1 = requests.get(a1)
        res1.encoding = 'utf-8'
        soup1 = BeautifulSoup(res1.text, 'html.parser')
        new = {}
        new['title'] = soup1.select(".show-title")[0].text
        #new['content'] = soup1.select("#content")[0].text
        #file(new['content'])
        about = soup1.select('.show-info')[0].text
        time = about.lstrip('发布时间:')[:19]
        new['time'] = datetime.datetime.strptime(time, '%Y-%m-%d %H:%M:%S')
        if about.find('来源:') > 0:
            new['origin'] = about[about.find('来源:'):].split()[0].lstrip("来源:")
        else:
            new['origin'] = "未知"
        if about.find('作者:') > 0:
            new['writer'] = about[about.find('作者:'):].split()[0].lstrip("作者:")
        else:
            new['writer'] = "佚名"
        if about.find('审核:') > 0:
            new['audit'] = about[about.find('审核:'):].split()[0].lstrip("审核:")
        else:
            new['audit'] = "佚名"
        if about.find('摄影:') > 0:
            new['photograph'] = about[about.find('摄影:'):].split()[0].lstrip("摄影:")
        else:
            new['photograph'] = "佚名"
        new['url'] = a1
        new['count'] = getClickCount(a1)
        return(new)
    
    
    def getnewslist(url):
        resurl = requests.get(url)
        resurl.encoding = 'utf-8'
        soup = BeautifulSoup(resurl.text, 'html.parser')
        a = soup.select('li')
        list = []
        for news in a:
            if len(news.select('.news-list-title')) > 0:
                a1 = news.select('a')[0].attrs['href']
                list.append(getInformation(a1))
        return (list)
    
    def getPage(url):
        res = requests.get(url)
        res.encoding = 'utf-8'
        soup = BeautifulSoup(res.text,'html.parser')
        n = int(soup.select('.a1')[0].text.rstrip('条'))//10+1
        return(n)
    
    
    url = "http://news.gzcc.cn/html/xiaoyuanxinwen/"
    
    newTotal = []
    newTotal.extend(getnewslist(url))
    n = getPage(url)
    print(n)
    for i in range(n,n+1):
        urls = "http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html".format(i)
        newTotal.extend(getnewslist(urls))
    

     

3. 安装pandas,用pandas.DataFrame(newstotal),创建一个DataFrame对象df.

4. 通过df将提取的数据保存到csv或excel 文件。

dt = pandas.DataFrame(newTotal)
    dt.to_excel('new.xlsx')

  

5. 用pandas提供的函数和方法进行数据分析:

  • 提取包含点击次数、标题、来源的前6行数据
  • 提取‘学校综合办’发布的,‘点击次数’超过3000的新闻。
  • 提取'国际学院'和'学生工作处'发布的新闻。
    print(dt.head(6))
    print(dt[(dt['count'] > 700)&(dt['origin']=='学校综合办')])
    sou = ['国际学院', '学生工作处']
    print(dt[dt['origin'].isin(sou)])
    

      

posted @ 2018-04-16 11:29  088陈志鸿  阅读(160)  评论(0编辑  收藏  举报