bzoj1430 小猴打架 prufer 序列

题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=1430

题解

prufer 序列模板题。

一个由 \(n\) 个点构成的有标号无根树的个数为 \(n^{n-2}\)

证明就是 prufer 序列,可以看我的学习笔记。

https://www.cnblogs.com/hankeke/p/prufer.html

然后因为一棵树的加边顺序随意,所以还需要乘上 \((n-1)!\)

所以最后答案为 \(n^{n-2}(n-1)!\)


#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back

template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}

typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;

template<typename I> inline void read(I &x) {
	int f = 0, c;
	while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
	x = c & 15;
	while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
	f ? x = -x : 0;
}

const int P = 9999991;

int n;

inline void work() {
	int ans = 1;
	for (int i = 1; i <= n - 2; ++i) ans = (ll)ans * n % P;
	for (int i = 1; i <= n - 1; ++i) ans = (ll)ans * i % P;
	printf("%d\n", ans);
}

inline void init() {
	read(n);
}

int main() {
#ifdef hzhkk
	freopen("hkk.in", "r", stdin);
#endif
	init();
	work();
	fclose(stdin), fclose(stdout);
	return 0;
}
posted @ 2019-10-09 21:14  hankeke303  阅读(117)  评论(0编辑  收藏  举报