jdk8之stream原理及流创建、排序、转换等处理
一、为什么需要 Stream
Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念。它也不同于 StAX 对 XML 解析的 Stream,也不是 Amazon Kinesis 对大数据实时处理的 Stream。Java 8 中的 Stream 是对集合(Collection)对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作(aggregate operation),或者大批量数据操作 (bulk data operation)。Stream API 借助于同样新出现的 Lambda 表达式,极大的提高编程效率和程序可读性。同时它提供串行和并行两种模式进行汇聚操作,并发模式能够充分利用多核处理器的优势,使用 fork/join 并行方式来拆分任务和加速处理过程。通常编写并行代码很难而且容易出错, 但使用 Stream API 无需编写一行多线程的代码,就可以很方便地写出高性能的并发程序。所以说,Java 8 中首次出现的 java.util.stream 是一个函数式语言+多核时代综合影响的产物。
二、什么是流
Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator。原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作;高级版本的 Stream,用户只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。
Stream 就如同一个迭代器(Iterator),单向,不可往复,数据只能遍历一次,遍历过一次后即用尽了,就好比流水从面前流过,一去不复返。
而和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。Java 的并行 API 演变历程基本如下:
一个流的生命周期分为三个阶段:
- 生成
- 操作、变换(可以多次)
- 消耗(只有一次)
获取一个数据源(source)→ 数据转换→执行操作获取想要的结果,每次转换原有 Stream 对象不改变,返回一个新的 Stream 对象(可以有多次转换),这就允许对其操作可以像链条一样排列,变成一个管道,如下图所示。
三、流的分类
1、有多种方式生成 Stream Source
1、Collection 和数组
- Collection.stream()
- Collection.parallelStream()
- Arrays.stream(T array) or Stream.of()
2、BufferedReader
- java.io.BufferedReader.lines()
3、静态工厂
- java.util.stream.IntStream.range()
- java.nio.file.Files.walk()
4、自己构建
- java.util.Spliterator
5、其他
- Random.ints()
- BitSet.stream()
- Pattern.splitAsStream(java.lang.CharSequence)
- JarFile.stream()
2、流的操作类型
- Intermediate:一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。
- Terminal:一个流只能有一个 terminal 操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。Terminal 操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 side effect。
在对于一个 Stream 进行多次转换操作 (Intermediate 操作),每次都对 Stream 的每个元素进行转换,而且是执行多次,这样时间复杂度就是 N(转换次数)个 for 循环里把所有操作都做掉的总和吗?其实不是这样的,转换操作都是 lazy 的,多个转换操作只会在 Terminal 操作的时候融合起来,一次循环完成。我们可以这样简单的理解,Stream 里有个操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在 Terminal 操作的时候循环 Stream 对应的集合,然后对每个元素执行所有的函数。
还有一种操作被称为 short-circuiting。用以指:
- 对于一个 intermediate 操作,如果它接受的是一个无限大(infinite/unbounded)的 Stream,但返回一个有限的新 Stream。
- 对于一个 terminal 操作,如果它接受的是一个无限大的 Stream,但能在有限的时间计算出结果。
当操作一个无限大的 Stream,而又希望在有限时间内完成操作,则在管道内拥有一个 short-circuiting 操作是必要非充分条件。
一个流操作的示例:
int sum = widgets.stream() .filter(w -> w.getColor() == RED) .mapToInt(w -> w.getWeight()) .sum();
stream() 获取当前小物件的 source,filter 和 mapToInt 为 intermediate 操作,进行数据筛选和转换,最后一个 sum() 为 terminal 操作,对符合条件的全部小物件作重量求和。
四、流的创建
简单说,对 Stream 的使用就是实现一个 filter-map-reduce 过程,产生一个最终结果,或者导致一个副作用(side effect)。
1、数组和集合创建流
// 1. Individual values Stream stream = Stream.of("a", "b", "c"); // 2. Arrays String [] strArray = new String[] {"a", "b", "c"}; stream = Stream.of(strArray); stream = Arrays.stream(strArray); // 3. Collections List<String> list = Arrays.asList(strArray); stream = list.stream();
多种形式的流
//创建普通流 Stream<String> stream = strs.stream(); //创建并行流 Stream<String> stream1 = strs.parallelStream(); //创建一个空的stream Stream<Integer> stream = Stream.empty(); //创建无限流,通过limit提取指定大小 Stream.generate(()->"number"+new Random().nextInt()).limit(100).forEach(System.out::println); Stream.generate(()->new Student("name",10)).limit(20).forEach(System.out::println);
产生规律数据
Stream.iterate(0,x->x+1).limit(10).forEach(System.out::println); Stream.iterate(0,x->x).limit(10).forEach(System.out::println); //Stream.iterate(0,x->x).limit(10).forEach(System.out::println);与如下代码意思是一样的 Stream.iterate(0, UnaryOperator.identity()).limit(10).forEach(System.out::println);
2、基本数值型流
- IntStream
- LongStream
- DoubleStream
当然我们也可以用 Stream<Integer>、Stream<Long> >、Stream<Double>,但是 boxing 和 unboxing 会很耗时,所以特别为这三种基本数值型提供了对应的 Stream。
Java 8 中还没有提供其它数值型 Stream,因为这将导致扩增的内容较多。而常规的数值型聚合运算可以通过上面三种 Stream 进行。
3、数值流的构造
IntStream.of(new int[]{1, 2, 3}).forEach(System.out::println); IntStream.range(1, 3).forEach(System.out::println); IntStream.rangeClosed(1, 3).forEach(System.out::println);
4、流转换为其它数据结构
// 1. Array String[] strArray1 = stream.toArray(String[]::new); // 2. Collection List<String> list1 = stream.collect(Collectors.toList()); List<String> list2 = stream.collect(Collectors.toCollection(ArrayList::new)); Set set1 = stream.collect(Collectors.toSet()); Stack stack1 = stream.collect(Collectors.toCollection(Stack::new)); // 3. String String str = stream.collect(Collectors.joining()).toString();
五、流的操作
1、常见操作分类
当把一个数据结构包装成 Stream 后,就要开始对里面的元素进行各类操作了。常见的操作可以归类如下。
- Intermediate:
map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered
- Terminal:
forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator
- Short-circuiting:
anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit
我们下面看一下 Stream 的比较典型用法:
2、map/flatMap
我们先来看 map。如果你熟悉 scala 这类函数式语言,对这个方法应该很了解,它的作用就是把 input Stream 的每一个元素,映射成 output Stream 的另外一个元素。
List<String> output = wordList.stream(). map(String::toUpperCase). collect(Collectors.toList());
转换大写示例:
List<String> output = wordList.stream(). map(String::toUpperCase). collect(Collectors.toList());
平方数:
List<Integer> nums = Arrays.asList(1, 2, 3, 4); List<Integer> squareNums = nums.stream(). map(n -> n * n). collect(Collectors.toList());
从上面例子可以看出,map 生成的是个 1:1 映射,每个输入元素,都按照规则转换成为另外一个元素。还有一些场景,是一对多映射关系的,这时需要 flatMap。
一对多:
Stream<List<Integer>> inputStream = Stream.of( Arrays.asList(1), Arrays.asList(2, 3), Arrays.asList(4, 5, 6) ); Stream<Integer> outputStream = inputStream. flatMap((childList) -> childList.stream());
flatMap 把 input Stream 中的层级结构扁平化,就是将最底层元素抽出来放到一起,最终 output 的新 Stream 里面已经没有 List 了,都是直接的数字。
3、filter
filter 对原始 Stream 进行某项测试,通过测试的元素被留下来生成一个新 Stream。
留下偶数:
Integer[] sixNums = {1, 2, 3, 4, 5, 6}; Integer[] evens = Stream.of(sixNums).filter(n -> n%2 == 0).toArray(Integer[]::new);
经过条件“被 2 整除”的 filter,剩下的数字为 {2, 4, 6}。
把单词挑出来:
List<String> output = reader.lines(). flatMap(line -> Stream.of(line.split(REGEXP))). filter(word -> word.length() > 0). collect(Collectors.toList());
这段代码首先把每行的单词用 flatMap 整理到新的 Stream,然后保留长度不为 0 的,就是整篇文章中的全部单词了。
4、forEach
forEach 方法接收一个 Lambda 表达式,然后在 Stream 的每一个元素上执行该表达式。
// Java 8 roster.stream() .filter(p -> p.getGender() == Person.Sex.MALE) .forEach(p -> System.out.println(p.getName())); // Pre-Java 8 for (Person p : roster) { if (p.getGender() == Person.Sex.MALE) { System.out.println(p.getName()); } }
对一个人员集合遍历,找出男性并打印姓名。可以看出来,forEach 是为 Lambda 而设计的,保持了最紧凑的风格。而且 Lambda 表达式本身是可以重用的,非常方便。当需要为多核系统优化时,可以 parallelStream().forEach(),只是此时原有元素的次序没法保证,并行的情况下将改变串行时操作的行为,此时 forEach 本身的实现不需要调整,而 Java8 以前的 for 循环 code 可能需要加入额外的多线程逻辑。
但一般认为,forEach 和常规 for 循环的差异不涉及到性能,它们仅仅是函数式风格与传统 Java 风格的差别。
另外一点需要注意,forEach 是 terminal 操作,因此它执行后,Stream 的元素就被“消费”掉了,你无法对一个 Stream 进行两次 terminal 运算。下面的代码是错误的:
stream.forEach(element -> doOneThing(element)); stream.forEach(element -> doAnotherThing(element));
相反,具有相似功能的 intermediate 操作 peek 可以达到上述目的。如下是出现在该 api javadoc 上的一个示例:
Stream.of("one", "two", "three", "four") .filter(e -> e.length() > 3) .peek(e -> System.out.println("Filtered value: " + e)) .map(String::toUpperCase) .peek(e -> System.out.println("Mapped value: " + e)) .collect(Collectors.toList());
forEach 不能修改自己包含的本地变量值,也不能用 break/return 之类的关键字提前结束循环。
5、findFirst
这是一个 termimal 兼 short-circuiting 操作,它总是返回 Stream 的第一个元素,或者空。
这里比较重点的是它的返回值类型:Optional。这也是一个模仿 Scala 语言中的概念,作为一个容器,它可能含有某值,或者不包含。使用它的目的是尽可能避免 NullPointerException。
String strA = " abcd ", strB = null; print(strA); print(""); print(strB); getLength(strA); getLength(""); getLength(strB); public static void print(String text) { // Java 8 Optional.ofNullable(text).ifPresent(System.out::println); // Pre-Java 8 if (text != null) { System.out.println(text); } } public static int getLength(String text) { // Java 8 return Optional.ofNullable(text).map(String::length).orElse(-1); // Pre-Java 8 // return if (text != null) ? text.length() : -1; };
在更复杂的 if (xx != null) 的情况中,使用 Optional 代码的可读性更好,而且它提供的是编译时检查,能极大的降低 NPE 这种 Runtime Exception 对程序的影响,或者迫使程序员更早的在编码阶段处理空值问题,而不是留到运行时再发现和调试。
Stream 中的 findAny、max/min、reduce 等方法等返回 Optional 值。还有例如 IntStream.average() 返回 OptionalDouble 等等。
6、reduce
这个方法的主要作用是把 Stream 元素组合起来。它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的 reduce。例如 Stream 的 sum 就相当于
Integer sum = integers.reduce(0, (a, b) -> a+b); 或 Integer sum = integers.reduce(0, Integer::sum);
也有没有起始值的情况,这时会把 Stream 的前面两个元素组合起来,返回的是 Optional。
// 字符串连接,concat = "ABCD" String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat); // 求最小值,minValue = -3.0 double minValue = Stream.of(-1.5, 1.0, -3.0, -2.0).reduce(Double.MAX_VALUE, Double::min); // 求和,sumValue = 10, 有起始值 int sumValue = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum); // 求和,sumValue = 10, 无起始值 sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get(); // 过滤,字符串连接,concat = "ace" concat = Stream.of("a", "B", "c", "D", "e", "F"). filter(x -> x.compareTo("Z") > 0). reduce("", String::concat);
上面代码例如第一个示例的 reduce(),第一个参数(空白字符)即为起始值,第二个参数(String::concat)为 BinaryOperator。这类有起始值的 reduce() 都返回具体的对象。而对于第四个示例没有起始值的 reduce(),由于可能没有足够的元素,返回的是 Optional,请留意这个区别。
7、limit/skip
limit 返回 Stream 的前面 n 个元素;skip 则是扔掉前 n 个元素(它是由一个叫 subStream 的方法改名而来)。
limit 和 skip 对运行次数的影响
public void testLimitAndSkip() { List<Person> persons = new ArrayList(); for (int i = 1; i <= 10000; i++) { Person person = new Person(i, "name" + i); persons.add(person); } List<String> personList2 = persons.stream(). map(Person::getName).limit(10).skip(3).collect(Collectors.toList()); System.out.println(personList2); } private class Person { public int no; private String name; public Person (int no, String name) { this.no = no; this.name = name; } public String getName() { System.out.println(name); return name; } }
输出结果为:
name1 name2 name3 name4 name5 name6 name7 name8 name9 name10 [name4, name5, name6, name7, name8, name9, name10]
这是一个有 10,000 个元素的 Stream,但在 short-circuiting 操作 limit 和 skip 的作用下,管道中 map 操作指定的 getName() 方法的执行次数为 limit 所限定的 10 次,而最终返回结果在跳过前 3 个元素后只有后面 7 个返回。
有一种情况是 limit/skip 无法达到 short-circuiting 目的的,就是把它们放在 Stream 的排序操作后,原因跟 sorted 这个 intermediate 操作有关:此时系统并不知道 Stream 排序后的次序如何,所以 sorted 中的操作看上去就像完全没有被 limit 或者 skip 一样。
limit 和 skip 对 sorted 后的运行次数无影响
List<Person> persons = new ArrayList(); for (int i = 1; i <= 5; i++) { Person person = new Person(i, "name" + i); persons.add(person); } List<Person> personList2 = persons.stream().sorted((p1, p2) -> p1.getName().compareTo(p2.getName())).limit(2).collect(Collectors.toList()); System.out.println(personList2);
上面的示例对清单 13 做了微调,首先对 5 个元素的 Stream 排序,然后进行 limit 操作。输出结果为:
name2 name1 name3 name2 name4 name3 name5 name4 [stream.StreamDW$Person@816f27d, stream.StreamDW$Person@87aac27]
即虽然最后的返回元素数量是 2,但整个管道中的 sorted 表达式执行次数没有像前面例子相应减少。
最后有一点需要注意的是,对一个 parallel 的 Steam 管道来说,如果其元素是有序的,那么 limit 操作的成本会比较大,因为它的返回对象必须是前 n 个也有一样次序的元素。取而代之的策略是取消元素间的次序,或者不要用 parallel Stream。
8、sorted
对 Stream 的排序通过 sorted 进行,它比数组的排序更强之处在于你可以首先对 Stream 进行各类 map、filter、limit、skip 甚至 distinct 来减少元素数量后,再排序,这能帮助程序明显缩短执行时间。
排序前进行 limit 和 skip
List<Person> persons = new ArrayList(); for (int i = 1; i <= 5; i++) { Person person = new Person(i, "name" + i); persons.add(person); } List<Person> personList2 = persons.stream().limit(2).sorted((p1, p2) -> p1.getName().compareTo(p2.getName())).collect(Collectors.toList()); System.out.println(personList2);
当然,这种优化是有 business logic 上的局限性的:即不要求排序后再取值。
9、min/max/distinct
min 和 max 的功能也可以通过对 Stream 元素先排序,再 findFirst 来实现,但前者的性能会更好,为 O(n),而 sorted 的成本是 O(n log n)。同时它们作为特殊的 reduce 方法被独立出来也是因为求最大最小值是很常见的操作。
找出最长一行的长度
BufferedReader br = new BufferedReader(new FileReader("c:\\SUService.log")); int longest = br.lines(). mapToInt(String::length). max(). getAsInt(); br.close(); System.out.println(longest);
用distinct找出全文的单词,转小写,并排序:
List<String> words = br.lines(). flatMap(line -> Stream.of(line.split(" "))). filter(word -> word.length() > 0). map(String::toLowerCase). distinct(). sorted(). collect(Collectors.toList()); br.close(); System.out.println(words);
10、Match
Stream 有三个 match 方法,从语义上说:
- allMatch:Stream 中全部元素符合传入的 predicate,返回 true
- anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true
- noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true
它们都不是要遍历全部元素才能返回结果。例如 allMatch 只要一个元素不满足条件,就 skip 剩下的所有元素,返回 false。对清单 13 中的 Person 类稍做修改,加入一个 age 属性和 getAge 方法。
使用 Match:
List<Person> persons = new ArrayList(); persons.add(new Person(1, "name" + 1, 10)); persons.add(new Person(2, "name" + 2, 21)); persons.add(new Person(3, "name" + 3, 34)); persons.add(new Person(4, "name" + 4, 6)); persons.add(new Person(5, "name" + 5, 55)); boolean isAllAdult = persons.stream(). allMatch(p -> p.getAge() > 18); System.out.println("All are adult? " + isAllAdult); boolean isThereAnyChild = persons.stream(). anyMatch(p -> p.getAge() < 12); System.out.println("Any child? " + isThereAnyChild);
六、自己生成流
1、Stream.generate
通过实现 Supplier 接口,你可以自己来控制流的生成。这种情形通常用于随机数、常量的 Stream,或者需要前后元素间维持着某种状态信息的 Stream。把 Supplier 实例传递给 Stream.generate() 生成的 Stream,默认是串行(相对 parallel 而言)但无序的(相对 ordered 而言)。由于它是无限的,在管道中,必须利用 limit 之类的操作限制 Stream 大小。
生成 10 个随机整数:
Random seed = new Random(); Supplier<Integer> random = seed::nextInt; Stream.generate(random).limit(10).forEach(System.out::println); //Another way IntStream.generate(() -> (int) (System.nanoTime() % 100)). limit(10).forEach(System.out::println);
Stream.generate() 还接受自己实现的 Supplier。例如在构造海量测试数据的时候,用某种自动的规则给每一个变量赋值;或者依据公式计算 Stream 的每个元素值。这些都是维持状态信息的情形。
自实现 Supplier:
Stream.generate(new PersonSupplier()). limit(10). forEach(p -> System.out.println(p.getName() + ", " + p.getAge())); private class PersonSupplier implements Supplier<Person> { private int index = 0; private Random random = new Random(); @Override public Person get() { return new Person(index++, "StormTestUser" + index, random.nextInt(100)); } }
2、Stream.iterate
iterate 跟 reduce 操作很像,接受一个种子值,和一个 UnaryOperator(例如 f)。然后种子值成为 Stream 的第一个元素,f(seed) 为第二个,f(f(seed)) 第三个,以此类推。
生成一个等差数列:
Stream.iterate(0, n -> n + 3).limit(10). forEach(x -> System.out.print(x + " "));
与 Stream.generate 相仿,在 iterate 时候管道必须有 limit 这样的操作来限制 Stream 大小。
七、Collectors 来进行分组操作
java.util.stream.Collectors 类的主要作用就是辅助进行各类有用的 reduction 操作,例如转变输出为 Collection,把 Stream 元素进行归组。
1、groupingBy/partitioningBy
按照年龄归组:
Map<Integer, List<Person>> personGroups = Stream.generate(new PersonSupplier()). limit(100). collect(Collectors.groupingBy(Person::getAge)); Iterator it = personGroups.entrySet().iterator(); while (it.hasNext()) { Map.Entry<Integer, List<Person>> persons = (Map.Entry) it.next(); System.out.println("Age " + persons.getKey() + " = " + persons.getValue().size()); }
按照未成年人和成年人归组:
Map<Boolean, List<Person>> children = Stream.generate(new PersonSupplier()). limit(100). collect(Collectors.partitioningBy(p -> p.getAge() < 18)); System.out.println("Children number: " + children.get(true).size()); System.out.println("Adult number: " + children.get(false).size());
在使用条件“年龄小于 18”进行分组后可以看到,不到 18 岁的未成年人是一组,成年人是另外一组。partitioningBy 其实是一种特殊的 groupingBy,它依照条件测试的是否两种结果来构造返回的数据结构,get(true) 和 get(false) 能即为全部的元素对象。
八、总结
总之,Stream 的特性可以归纳为:
- 不是数据结构
- 它没有内部存储,它只是用操作管道从 source(数据结构、数组、generator function、IO channel)抓取数据。
- 它也绝不修改自己所封装的底层数据结构的数据。例如 Stream 的 filter 操作会产生一个不包含被过滤元素的新 Stream,而不是从 source 删除那些元素。
- 所有 Stream 的操作必须以 lambda 表达式为参数
- 不支持索引访问
- 你可以请求第一个元素,但无法请求第二个,第三个,或最后一个。不过请参阅下一项。
- 很容易生成数组或者 List
- 惰性化
- 很多 Stream 操作是向后延迟的,一直到它弄清楚了最后需要多少数据才会开始。
- Intermediate 操作永远是惰性化的。
- 并行能力
- 当一个 Stream 是并行化的,就不需要再写多线程代码,所有对它的操作会自动并行进行的。
- 可以是无限的
- 集合有固定大小,Stream 则不必。limit(n) 和 findFirst() 这类的 short-circuiting 操作可以对无限的 Stream 进行运算并很快完成。
JDK8 Stream详解
概念
Stream是Java8 API的新成员,它允许以声明性方式处理数据集合 。
特点
(1)代码简洁:函数式编程写出的代码简洁且意图明确,使用stream接口让你从此告别for循环。
(2)多核友好:Java函数式编程使得编写并行程序从未如此简单,你需要的全部就是调用一下方法。
流程
1)第一步:把集合转换为流stream
2)第二步:操作stream流
stream流在管道中经过中间操作(intermediate operation)的处理,最后由最终操作(terminal operation)得到前面处理的结果
操作符
两种:中间操作符、终止操作符
中间操作符
流方法 含义 示例
filter 用于通过设置的条件过滤出元素 List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");List<String> filtered = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.toList());
distinct 返回一个元素各异(根据流所生成元素的hashCode和equals方法实现)的流。 List<Integer> numbers = Arrays.asList(1, 2, 1, 3, 3, 2, 4);numbers.stream().filter(i -> i % 2 == 0).distinct().forEach(System.out::println);
limit 会返回一个不超过给定长度的流。 List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");List<String> limited = strings.stream().limit(3).collect(Collectors.toList());
skip 返回一个扔掉了前n个元素的流。 List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");List<String> skiped = strings.stream().skip(3).collect(Collectors.toList());
map 接受一个函数作为参数。这个函数会被应用到每个元素上,并将其映射成一个新的元素(使用映射一词,是因为它和转换类似,但其中的细微差别在于它是“创建一个新版本”而不是去“修改”)。 List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");List<String> mapped = strings.stream().map(str->str+"-itcast").collect(Collectors.toList());
flatMap 使用flatMap方法的效果是,各个数组并不是分别映射成一个流,而是映射成流的内容。所有使用map(Arrays::stream)时生成的单个流都被合并起来,即扁平化为一个流。 List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");Stream<Character> flatMap = strings.stream().flatMap(Java8StreamTest::getCharacterByString);
sorted 返回排序后的流 List<String> strings1 = Arrays.asList("abc", "abd", "aba", "efg", "abcd","jkl", "jkl");List<String> sorted1 = strings1.stream().sorted().collect(Collectors.toList());
示例代码:
1)filter
/**
* 功能描述:根据条件过滤集合数据
* @return : void
*/
@Test
public void filter(){
List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");
List<String> filtered = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.toList());
out.println(filtered);
}
2)distinct
/**
* 功能描述:去除集合中重复数据
* @return : void
*/
@Test
public void distinct(){
List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");
List<String> distincted = strings.stream().distinct().collect(Collectors.toList());
out.println(distincted);
}
3)limit
/**
* 功能描述:指定获取集合前x条数据,重新构造一个新的集合
* @return : void
*/
@Test
public void limit(){
List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");
List<String> limited = strings.stream().limit(3).collect(Collectors.toList());
out.println(limited);
}
4)skip
/**
* 功能描述:排除集合前x条数据,把后面的数据重新构造一个新的集合
* @return : void
*/
@Test
public void skip(){
List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");
List<String> skiped = strings.stream().skip(3).collect(Collectors.toList());
out.println(skiped);
}
5)map
/**
* 功能描述:对集合中所有元素统一处理
* @return : void
*/
@Test
public void map(){
List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");
List<String> mapped = strings.stream().map(str->str+"-itcast").collect(Collectors.toList());
out.println(mapped);
}
6)flatMap
/**
* 功能描述:对集合中所有元素统一处理
* @return : void
*/
@Test
public void flatMap(){
List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");
Stream<String> stringStream = strings.stream().map(x -> x);
Stream<String> stringStream1 = strings.stream().flatMap(x -> Arrays.asList(x.split(" ")).stream());
}
7)sorted
/**
* 功能描述 : 对集合进行排序
* @return : void
*/
@Test
public void sorted(){
List<String> strings1 = Arrays.asList("abc", "abd", "aba", "efg", "abcd","jkl", "jkl");
List<String> strings2 = Arrays.asList("张三", "李四", "王五", "赵柳", "张哥","李哥", "王哥");
List<Integer> strings3 = Arrays.asList(10, 2, 30, 22, 1,0, -9);
List<String> sorted1 = strings1.stream().sorted().collect(Collectors.toList());
List<String> sorted2 = strings2.stream().sorted(Collections.reverseOrder(Collator.getInstance(Locale.CHINA))).collect(Collectors.toList());
List<Integer> sorted3 = strings3.stream().sorted().collect(Collectors.toList());
out.println(sorted1);
out.println(sorted2);
out.println(sorted3);
}
Map、flatMap区别
map:对流中每一个元素进行处理
flatMap:流扁平化,让你把一个流中的“每个值”都换成另一个流,然后把所有的流连接起来成为一个流
总结:map是对一级元素进行操作,flatmap是对二级元素操作。
本质区别:map返回一个值;flatmap返回一个流,多个值。
应用场景:map对集合中每个元素加工,返回加工后结果;flatmap对集合中每个元素加工后,做扁平化处理后(拆分层级,放到同一层)然后返回
/**
* 方法一
* 功能描述: 通过使用map、flatMap把字符串转换为字符输出对比区别
* @return : void
*/
@Test
public void flatMap2Map(){
List<String> strings = Arrays.asList("abc", "abc", "bc", "efg", "abcd","jkl", "jkl");
final Stream<Character> flatMap = strings.stream().flatMap(Java8StreamTest::getCharacterByString);
flatMap.forEach(System.out::println);
//----------------------------------------------
final Stream<Stream<Character>> mapStream = strings.stream().map(Java8StreamTest::getCharacterByString);
//mapStream.forEach(System.out::println);
out.println("------------------------------------------------");
mapStream.forEach(stream-> {stream.forEach(character->{System.out.println(character);});});
}
公共方法(字符串转换为字符流)
/**
* 功能描述:字符串转换为字符流
* @param str
* @return : java.util.stream.Stream<java.lang.Character>
*/
public static Stream<Character> getCharacterByString(String str) {
List<Character> characterList = new ArrayList<>();
for (Character character : str.toCharArray()) {
characterList.add(character);
}
return characterList.stream();
}
终止操作符
流方法 含义 示例
anyMatch 检查是否至少匹配一个元素,返回boolean。 List<String> strings = Arrays.asList("abc", "abd", "aba", "efg", "abcd","jkl", "jkl");boolean b = strings.stream().anyMatch(s -> s == "abc");
allMatch 检查是否匹配所有元素,返回boolean。 List<String> strings = Arrays.asList("abc", "abd", "aba", "efg", "abcd","jkl", "jkl");boolean b = strings.stream().allMatch(s -> s == "abc");
noneMatch 检查是否没有匹配所有元素,返回boolean。 List<String> strings = Arrays.asList("abc", "abd", "aba", "efg", "abcd","jkl", "jkl");boolean b = strings.stream().noneMatch(s -> s == "abc");
findAny 将返回当前流中的任意元素。 List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");Optional<String> any = strings.stream().findAny();
findFirst 返回第一个元素 List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");Optional<String> first = strings.stream().findFirst();
forEach 遍历流 List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");strings.stream().forEach(s -> out.println(s));
collect 收集器,将流转换为其他形式。 List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");Set<String> set = strings.stream().collect(Collectors.toSet());List<String> list = strings.stream().collect(Collectors.toList());Map<String, String> map = strings.stream().collect(Collectors.toMap(v ->v.concat("_name"), v1 -> v1, (v1, v2) -> v1));
reduce 可以将流中元素反复结合起来,得到一个值。 List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");Optional<String> reduce = strings.stream().reduce((acc,item) -> {return acc+item;});if(reduce.isPresent())out.println(reduce.get());
count 返回流中元素总数。 List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");long count = strings.stream().count();
示例代码
1)anyMatch
/**
* 功能描述 : 判断集合中是否至少存在一个元素满足条件
* @return : void
*/
@Test
public void anyMatch(){
List<String> strings = Arrays.asList("abc", "abd", "aba", "efg", "abcd","jkl", "jkl");
boolean b = strings.stream().anyMatch(s -> s == "abc");
out.println(b);
}
2)allMatch
/**
* 功能描述 : 判断集合中是否所有元素都满足条件
* @return : void
*/
@Test
public void allMatch(){
List<String> strings = Arrays.asList("abc", "abd", "aba", "efg", "abcd","jkl", "jkl");
boolean b = strings.stream().allMatch(s -> s == "abc");
out.println(b);
}
3)noneMatch
/**
* 功能描述 : 判断集合中是否所有元素都不满足条件
* @return : void
*/
@Test
public void noneMatch(){
List<String> strings = Arrays.asList("abc", "abd", "aba", "efg", "abcd","jkl", "jkl");
boolean b = strings.stream().noneMatch(s -> s == "abc");
out.println(b);
}
4)findAny
/**
* 功能描述 : 返回当前流中任意元素
* @return : void
*/
@Test
public void findAny(){
List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");
Optional<String> any = strings.stream().findAny();
if(any.isPresent()) out.println(any.get());
}
5)findFirst
/**
* 功能描述 : 返回当前流中第一个元素
* @return : void
*/
@Test
public void findFirst(){
List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");
Optional<String> first = strings.stream().findFirst();
if(first.isPresent()) out.println(first.get());
}
6)forEach java
/**
* 功能描述 : 遍历流
* @return : void
*/
@Test
public void foreach(){
List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");
strings.stream().forEach(s -> out.println(s));
}
7)collect
/**
* 功能描述 : 流转换为其他形式
* @return : void
*/
@Test
public void collect(){
List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");
Set<String> set = strings.stream().collect(Collectors.toSet());
List<String> list = strings.stream().collect(Collectors.toList());
Map<String, String> map = strings.stream().collect(Collectors.toMap(v ->v.concat("_name"), v1 -> v1, (v1, v2) -> v1));
out.println(set);
out.println(list);
out.println(map);
}
8)reduce
/**
* 功能描述 : 将流中元素反复结合起来,得到一个值
* @return : void
*/
@Test
public void reduce(){
List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");
//reduce方法一
Optional<String> reduce1 = strings.stream().reduce((acc,item) -> {return acc+item;});
//reduce方法二
String reduce2 = strings.stream().reduce("itcast", (acc, item) -> {
return acc + item;
});
//reduce方法三
ArrayList<String> reduce3 = strings.stream().reduce(
new ArrayList<String>(),
new BiFunction<ArrayList<String>, String, ArrayList<String>>() {
@Override
public ArrayList<String> apply(ArrayList<String> acc, String item) {
acc.add(item);
return acc;
}
},
new BinaryOperator<ArrayList<String>>() {
@Override
public ArrayList<String> apply(ArrayList<String> acc, ArrayList<String> item) {
return acc;
}
}
);
if(reduce1.isPresent())out.println(reduce1.get());
out.println(reduce2);
out.println(reduce3);
}
9)count
/**
* 功能描述 : 返回流中元素总数
* @return : void
*/
@Test
public void count(){
List<String> strings = Arrays.asList("cv", "abd", "aba", "efg", "abcd","jkl", "jkl");
long count = strings.stream().count();
out.println(count);
}