How many integers can you find(容斥+dfs容斥)
How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6001 Accepted Submission(s): 1722
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2 2 3
Sample Output
7
题解:题意就是找N-1中与M个数不互斥数的个数,由于4和6,12就可以除4和6,所以要找被选的数的最小公倍数;由于刚开始没考虑这点,直接找了24;注意M个数中可能有0;dfs+容斥,竟然运行时间还短点...
容斥代码:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<vector> using namespace std; typedef long long LL; vector<LL>p; LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);} void rc(LL x){ LL sum=0; for(int i=1;i<(1<<p.size());i++){ LL num=0,cur=1; for(int j=0;j<p.size();j++){ if(i&(1<<j)){ num++; cur=cur*p[j]/gcd(cur,p[j]); } }//printf("%lld\n",cur); if(num&1)sum+=x/cur; else sum-=x/cur; } printf("%lld\n",sum); } int main(){ LL N,M; LL x; // printf("%lld\n",(LL)pow(19,10)); while(~scanf("%lld%lld",&N,&M)){ p.clear(); for(int i=0;i<M;i++){ scanf("%lld",&x); if(x==0)continue; p.push_back(x); } rc(N-1); } return 0; }
dfs+容斥:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<vector> using namespace std; typedef long long LL; LL m[15],ans; LL N,M; int k; LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);} void dfs(LL cur,LL pos,int t){ if(t==0){ if(k&1)ans+=N/cur; else ans-=N/cur; return; } if(pos>M)return; dfs(cur*m[pos]/gcd(cur,m[pos]),pos+1,t-1); dfs(cur,pos+1,t); } int main(){ LL x; // printf("%lld\n",(LL)pow(19,10)); while(~scanf("%lld%lld",&N,&M)){ N--; for(int i=1;i<=M;i++){ scanf("%lld",&x); if(x==0)continue; m[i]=x; } ans=0; for(k=1;k<=M;k++){ dfs(1,1,k); } printf("%lld\n",ans); } return 0; }