matrix(dp)
matrix
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 91 Accepted Submission(s): 62
Problem Description
Given a matrix with n rows and m columns ( n+m is an odd number ), at first , you begin with the number at top-left corner (1,1) and you want to go to the number at bottom-right corner (n,m). And you must go right or go down every steps. Let the numbers you go through become an array a1,a2,...,a2k. The cost is a1∗a2+a3∗a4+...+a2k−1∗a2k. What is the minimum of the cost?
Input
Several test cases(about 5)
For each cases, first come 2 integers, n,m(1≤n≤1000,1≤m≤1000)
N+m is an odd number.
Then follows n lines with m numbers ai,j(1≤ai≤100)
For each cases, first come 2 integers, n,m(1≤n≤1000,1≤m≤1000)
N+m is an odd number.
Then follows n lines with m numbers ai,j(1≤ai≤100)
Output
For each cases, please output an integer in a line as the answer.
Sample Input
2 3
1 2 3
2 2 1
2 3
2 2 1
1 2 4
Sample Output
4
8
Source
题解:dp题,发现自己对于dp太弱了。。。
题意是一个n*m的矩阵,从(1,1)走到(n,m)的a1*a2+a3*a4+a5*a6。。。。其中a1,a2。。。是矩阵的当前值;
由于只能向右向下,从(1,1)开始,那么(x+1,y)或(x,y+1)由于是从1+1=2偶数开始,所以到x+y+1是奇数的时候再进行运算,
所以每次往前推两步即可,初始化dp为INF,因为求最小值,dp[1][1]=0;状态转移方程:
if((i+j)&1){
dp[i][j]=min(dp[i-1][j]+num[i-1][j]*num[i][j],dp[i][j-1]+num[i][j-1]*num[i][j]);
}
else dp[i][j]=min(dp[i-1][j],dp[i][j-1]);
代码:
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #define mem(x,y) memset(x,y,sizeof(x)) using namespace std; const int INF=0x3f3f3f3f; const double PI=acos(-1.0); const int MAXN=1010; int dp[MAXN][MAXN],num[MAXN][MAXN]; int main(){ int n,m; while(~scanf("%d%d",&n,&m)){ mem(dp,INF); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++){ scanf("%d",&num[i][j]); if(i==1&&j==1){ dp[i][j]=0;continue; } if((i+j)&1){ dp[i][j]=min(dp[i-1][j]+num[i-1][j]*num[i][j],dp[i][j-1]+num[i][j-1]*num[i][j]); } else dp[i][j]=min(dp[i-1][j],dp[i][j-1]); } printf("%d\n",dp[n][m]); } return 0; }