Computer Transformation(规律,大数打表)

Computer Transformation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6946    Accepted Submission(s): 2515


Problem Description
A sequence consisting of one digit, the number 1 is initially written into a computer. At each successive time step, the computer simultaneously tranforms each digit 0 into the sequence 1 0 and each digit 1 into the sequence 0 1. So, after the first time step, the sequence 0 1 is obtained; after the second, the sequence 1 0 0 1, after the third, the sequence 0 1 1 0 1 0 0 1 and so on.

How many pairs of consequitive zeroes will appear in the sequence after n steps?
 

 

Input
Every input line contains one natural number n (0 < n ≤1000).
 

 

Output
For each input n print the number of consecutive zeroes pairs that will appear in the sequence after n steps.
 

 

Sample Input
2 3
 

 

Sample Output
1 1
题解:f(n)=2*f(n-2)+f(n-1)由于每个n-2的00生成两个01,在n的地方就会生成两个00;n-1的00在n生成一个00;由此可以找出规律;
代码:
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 using namespace std;
 7 #define mem(x,y) memset(x,y,sizeof(x))
 8 typedef long long LL;
 9 const int MAXN=1010;
10 char dp[MAXN][MAXN];
11 char c[MAXN];
12 int x[MAXN],y[MAXN],z[MAXN];
13 void bigsum(char *a,char *b){
14     int len1,len2;
15     mem(x,0);mem(y,0);mem(z,0);
16     len1=strlen(a);len2=strlen(b);
17     int len=max(len1,len2);
18     for(int i=len1-1,j=0;i>=0;i--,j++)x[j]=a[i]-'0';
19     for(int i=len2-1,j=0;i>=0;i--,j++)y[j]=b[i]-'0';
20     for(int i=0;i<len;i++){
21         z[i]=x[i]+y[i]+z[i];
22         z[i+1]+=z[i]/10;
23         z[i]%=10;
24         if(z[len])len++;
25     }
26     for(int i=len-1,j=0;i>=0;i--,j++)c[j]=z[i]+'0';
27     c[len]='\0';
28 }
29 int main(){
30     int n;
31     dp[1][0]='0';dp[1][1]='\0';
32     dp[2][0]='1';dp[2][1]='\0';
33     for(int i=3;i<=1000;i++){
34         bigsum(dp[i-1],dp[i-2]);
35         bigsum(c,dp[i-2]);
36         memcpy(dp[i],c,sizeof(c));
37     }
38     while(~scanf("%d",&n)){
39         printf("%s\n",dp[n]);
40     }
41     return 0;
42 }

 

 
posted @ 2015-11-15 16:44  handsomecui  阅读(262)  评论(0编辑  收藏  举报