Ultra-QuickSort(归并排序)
Ultra-QuickSort
Time Limit: 7000MS | Memory Limit: 65536K | |
Total Submissions: 49267 | Accepted: 18035 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The
input contains several test cases. Every test case begins with a line
that contains a single integer n < 500,000 -- the length of the input
sequence. Each of the the following n lines contains a single integer 0
≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is
terminated by a sequence of length n = 0. This sequence must not be
processed.
Output
For
every input sequence, your program prints a single line containing an
integer number op, the minimum number of swap operations necessary to
sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
题解,错了半天,while出错,改成for循环就对了,至今不知道为啥。。。
代码:
1 #include<stdio.h> 2 const int MAXN=500010; 3 int a[MAXN],b[MAXN]; 4 long long ans; 5 void mergesort(int start,int mid,int end){ 6 int i=start,k=start,j=mid+1; 7 while(i<=mid&&j<=end){ 8 if(a[i]<=a[j])b[k++]=a[i++]; 9 else{ 10 ans+=j-k; 11 b[k++]=a[j++]; 12 } 13 } 14 while(i<=mid)b[k++]=a[i++]; 15 while(j<=end)b[k++]=a[j++]; 16 //while(start<=end)a[start++]=b[start]; 17 for(int i=start;i<=end;i++)a[i]=b[i]; 18 } 19 void ms(int l,int r){ 20 if(l<r){ 21 int mid=(l+r)/2; 22 ms(l,mid); 23 ms(mid+1,r); 24 mergesort(l,mid,r); 25 } 26 } 27 int main(){ 28 int n; 29 while(scanf("%d",&n),n){ 30 ans=0; 31 for(int i=1;i<=n;i++)scanf("%d",a+i); 32 ms(1,n); 33 printf("%lld\n",ans); 34 } 35 return 0; 36 }