bzoj 1132 POI2008 Tro
大水题=_=,可我想复杂了……
很裸的暴力,就是加了个小优化……
叉积求面积 :abs(xi*yj - yi*xj) 所以去掉绝对值,把 xi 和 xj 提出来就可以求和了
去绝对值加个极角排序,每次把最左边的点当成原点,然后剩下的排序,接着枚举第二个点,求叉积之和……
坐标都是整数,用long long,最后再除2
上代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #include <cmath> #define N 3010 using namespace std; struct sss { long long x, y; }dian[N], now, zan[N]; int n; long long ans = 0; long long chaji(sss x, sss y) { return (x.x-now.x)*(y.y-now.y) - (x.y-now.y)*(y.x-now.x); } bool cmp1(sss x, sss y) { return x.x == y.x ? x.y < y.y : x.x < y.x; } bool cmp2(sss x, sss y ){ return chaji(x, y) > 0; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) scanf("%lld%lld", &dian[i].x, &dian[i].y); sort(dian+1, dian+1+n, cmp1); for (int i = 1; i <= n-2; ++i) { now = dian[i]; long long ty = 0, tx = 0; for (int j = i+1; j <= n; ++j) zan[j] = dian[j]; sort(zan+i+1, zan+1+n, cmp2); for (int j = i+1; j <= n; ++j) { ty += zan[j].y-now.y; tx += zan[j].x-now.x; } for (int j = i+1; j <= n-1; ++j) { ty -= zan[j].y-now.y; tx -= zan[j].x-now.x; ans += (zan[j].x-now.x)*ty - (zan[j].y-now.y)*tx; } } if (ans % 2) printf("%lld.5\n", ans/2); else printf("%lld.0\n", ans/2); }