kafka集群原理及部署
官方地址
概述
Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用。目前越来越多的开源分布式处理系统如Cloudera、Apache Storm、Spark等都支持与Kafka集成。
原理
如上图所示,一个典型的Kafka体系架构包括若干Producer(可以是服务器日志,业务数据,页面前端产生的page view等等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer (Group),以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在consumer group发生变化时进行rebalance。Producer使用push(推)模式将消息发布到broker,Consumer使用pull(拉)模式从broker订阅并消费消息。
名称 | 直译 | 解释 |
---|---|---|
broker | kafka节点 | 消息中间件处理节点,一个kafka节点就是一个broker,一个或者多个broker可以组成一个kafka集群 |
Producer | 生产者 | 消息生产者,向broker发布消息的客户端 |
Consumer | 消费者 | 消息消费者,从broker读写消息的客户端 |
Topic | 主题 | kafka通过Topic对消息进行归类,发布都kafka集群的每一条消息都需要指定一个Topic |
Partition | 分区 | 一个Topic中的消息数据按照多个分区组织,分区是kafka消息队列组织的最小单位,一个分区可以看作是一个有序的消息队列(先入先出) |
Consumer group | 消费组 | 每一个Consumer属于一个特定的Consumer group,一个消息可以发送到多个不同的Consumer group,但一个Consumer group只有一个Consumer能够消费该消息 |
Replica | 副本 | 为保障集群总某个节点发生故障,该节点的partition数据不丢失,kafka提供的容灾机制 |
leader | 主副本 | 每个分区多个副本为“主”,生产者发送数据的对象,以及消费组消费数据的对象都是leader |
follower | 从副本 | 每个分区多个副本为“从”,实时从leader中同步数据,保持和leader数据的同步 |
一个topic可以认为一个一类消息,每个topic将被分成多个partition,每个partition在存储层面是append log文件。任何发布到此partition的消息都会被追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset为一个long型的数字,它唯一标记一条消息。每条消息都被append到partition中,是顺序写磁盘,因此效率非常高(经验证,顺序写磁盘效率比随机写内存还要高,这是Kafka高吞吐率的一个很重要的保证)。每一条消息被发送到broker中,会根据partition规则选择被存储到哪一个partition。如果partition规则设置的合理,所有消息可以均匀分布到不同的partition里,这样就实现了水平扩展。(如果一个topic对应一个文件,那这个文件所在的机器I/O将会成为这个topic的性能瓶颈,而partition解决了这个问题)。所以kafka分区是提高kafka性能的关键所在,当你发现你的集群性能不高时,常用手段就是增加Topic的分区,分区里面的消息是按照从新到老的顺序进行组织,消费者从队列头订阅消息,生产者从队列尾添加消息。
Kafka和其他主流分布式消息系统的对比
集群部署
实验环境
node | IP | Jdk | Zookeeper | Kafka |
---|---|---|---|---|
node3 | 192.168.101.209 | jdk1.8.0_333 | Zk3 | Broker2 |
node2 | 192.168.100.64 | jdk1.8.0_333 | Zk2 | Broker1 |
node1 | 192.168.101.1 | jdk1.8.0_333 | Zk1 | Broker0 |
安装包下载
https://kafka.apache.org/downloads
百来M,下载缓慢,建议开启漫游模式
kafka_2.13-3.4.0.tgz
部署
1. 安装jdk,参考《zookeeper原理及集群部署》
2. 安装zookeeper集群,参考《zookeeper原理及集群部署》
3. 安装kafka集群(node)
(只要将包拷贝到有jdk环境的系统下,解压,修改完配置,直接就可以启动)
3.1 解压
tar -zxf kafka_2.13-3.4.0.tgz
3.2 修改配置server.properties
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This configuration file is intended for use in ZK-based mode, where Apache ZooKeeper is required.
# See kafka.server.KafkaConfig for additional details and defaults
#
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
#当前机器在集群中的唯一标识,每一台都不一样,和zookeeper的myid性质一样
broker.id=0
############################# Socket Server Settings #############################
# The address the socket server listens on. If not configured, the host name will be equal to the value of
# java.net.InetAddress.getCanonicalHostName(), with PLAINTEXT listener name, and port 9092.
# FORMAT:
# listeners = listener_name://host_name:port
# EXAMPLE:
# listeners = PLAINTEXT://your.host.name:9092
# 指定监听的地址及端口号,该配置项是指定内网ip
#listeners=PLAINTEXT://:9092
listeners=PLAINTEXT://192.168.101.1:19092
# Listener name, hostname and port the broker will advertise to clients.
# If not set, it uses the value for "listeners".
# 如果需要开放外网访问,则在该配置项指定外网ip
#advertised.listeners=PLAINTEXT://your.host.name:9092
# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
# The number of threads that the server uses for receiving requests from the network and sending responses to the network
#broker通过网络接收请求和发送响应的线程数
num.network.threads=3
# The number of threads that the server uses for processing requests, which may include disk I/O
#broker进行I/O处理的线程数
num.io.threads=8
# The send buffer (SO_SNDBUF) used by the socket server
#发送缓冲区buffer大小,数据不是一下子就发送的,先回存储到缓冲区了到达一定的大小后在发送,能提高性能
socket.send.buffer.bytes=102400
# The receive buffer (SO_RCVBUF) used by the socket server
#kafka接收缓冲区大小,当数据到达一定大小后在序列化到磁盘
socket.receive.buffer.bytes=102400
# The maximum size of a request that the socket server will accept (protection against OOM)
#这个参数是向kafka请求消息或者向kafka发送消息的请请求的最大数,这个值不能超过java的堆栈大小
socket.request.max.bytes=104857600
############################# Log Basics #############################
# A comma separated list of directories under which to store log files
#消息存放的目录,这个目录可以配置为“,”逗号分割的表达式,上面的num.io.threads要大于这个目录的个数,如果配置多个目录,新创建的topic他把消息持久化的地方是,当前以逗号分割的目录中,那个分区数最少就放那一个
log.dirs=/app/kafka-19092/kafka-logs
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
#默认的分区数,一个topic默认1个分区数
num.partitions=1
# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
#用来恢复和刷新data下数据的线程数
num.recovery.threads.per.data.dir=1
############################# Internal Topic Settings #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
#每个topic创建时的副本数,默认是1,生产建议大于1,比如3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
############################# Log Retention Policy #############################
# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.
# The minimum age of a log file to be eligible for deletion due to age
#默认消息的最大持久化时间,168小时,7天
log.retention.hours=168
# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
#kafka的消息是以追加的形式落地到文件,每个segment文件大小,当超过这个值的时候,kafka会新起一个文件,默认是1G
#log.segment.bytes=1073741824
# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
#每隔300000毫秒去检查上面配置的log失效时间(log.retention.hours=168 ),到目录查看是否有过期的消息如果有,删除
log.retention.check.interval.ms=300000
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=192.168.101.1:2281,192.168.100.64:2281,192.168.101.209:2281
# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=18000
############################# Group Coordinator Settings #############################
# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0
3.3 创建kafka用户并修改归属
sudo groupadd kafka
sudo useradd -r -g kafka -s /bin/false kafka
chown -R kafka:kafka /app/kafka-19092/
3.4 启动脚本授权
chmod a+x bin/*.sh
3.5 修改完后,拷贝包到node2和node3上
注:broker.id=0 每台服务器的broker.id都不能相同,node2 broker.id=1,node3 broker.id=2。
3.5 配置systemctl
vim /etc/systemd/system/kafka.service
[Unit]
Description=kafka
After=network.target
[Service]
Type=simple
LimitNOFILE=65535
LimitNPROC=65535
Environment=JAVA_HOME=/usr/local/jdk1.8.0_333
User=kafka
Group=kafka
ExecStart=/app/kafka-19092/bin/kafka-server-start.sh /app/kafka-19092/config/server.properties
ExecStop=/app/kafka-19092/bin/kafka-server-stop.sh
Restart=always
[Install]
WantedBy=multi-user.target
3.6 加入开机启动并启动服务
systemctl enable kafka
systemctl start kafka
验证
1.topic操作 kafka-topics.sh
参数 | 描述 |
---|---|
--bootstrap-server <String: server to connect to> | 连接kfka broker主机名称和端口 |
--config <String: name=value> | 修改配置 |
--create | 创建主题 |
--delete | 删除主题 |
--alter | 修改主题 |
--list | 查看所有主题 |
--describe | 查看主题描述 |
--partitions <Integer: # of partitions> | 设置分区数 |
--replication-factor <Integer:replication factor> | 设置分区副本 |
#创建topic为hahaha,设置为1个分区,3个副本
[root@l3jkm_elk_v04 ~]# kafka-topics.sh --bootstrap-server 192.168.100.64:19092 --create --partitions 1 --replication-factor 3 --topic hahaha
Created topic hahaha.
#查看所有的topic
[root@l3jkm_elk_v04 ~]# kafka-topics.sh --bootstrap-server 192.168.100.64:19092 --list
hahaha
#查看指定的topic描述信息
[root@l3jkm_elk_v04 ~]# kafka-topics.sh --bootstrap-server 192.168.100.64:19092 --describe --topic hahaha
Topic: hahaha TopicId: pUx0mOtNSoeNcBmS1tOlVA PartitionCount: 1 ReplicationFactor: 3 Configs:
Topic: hahaha Partition: 0 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Partition: 0 表示分区为0号分区
Replicas: 2,0,1 表示有三个副本,分别是0,1,2
Leader: 2 表示2号副本为Leader
#修改topic配置,修改分区数(注:只能增加不能减少)
[root@l3jkm_elk_v04 ~]# kafka-topics.sh --bootstrap-server 192.168.100.64:19092 --alter --topic hahaha --partitions 3
[root@l3jkm_elk_v04 ~]# kafka-topics.sh --bootstrap-server 192.168.100.64:19092 --describe --topic hahaha
Topic: hahaha TopicId: pUx0mOtNSoeNcBmS1tOlVA PartitionCount: 3 ReplicationFactor: 3 Configs:
Topic: hahaha Partition: 0 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Topic: hahaha Partition: 1 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: hahaha Partition: 2 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
#删除名为hahaha的topic
[root@l3jkm_elk_v04 ~]# kafka-topics.sh --bootstrap-server 192.168.100.64:19092 --delete --topic hahaha
[root@l3jkm_elk_v04 ~]#
[root@l3jkm_elk_v04 ~]# kafka-topics.sh --bootstrap-server 192.168.100.64:19092 --list
2.producer操作 kafka-console-producer.sh
参数 | 描述 |
---|---|
--bootstrap-server <String: server to connect to> | 连接kfka broker主机名称和端口 |
--topic <String: topic> | 指定连接的topic名称 |
--broker-list <String: broker-list> | 官方建议使用--bootstrap-server来代替 |
3.consumer操作 kafka-console-consumer.sh
参数 | 描述 |
---|---|
--bootstrap-server <String: server to connect to> | 连接kfka broker主机名称和端口 |
--broker-list <String: broker-list> | |
--topic <String: topic> | 指定连接的topic名称 |
--from-beginning | 从头开始消费消息 |
--group <String: consumer group id> | 指定消费者组名 |
##开个窗口A,模拟producer发布消息
[root@l3jkm_elk_v04 ~]# kafka-console-producer.sh --bootstrap-server 192.168.100.64:19092 --topic hahaha
>abcdefg
>ssssss
##开另一个窗口B,模拟consumer消费消息
[root@l3jkm_elk_v03 bin]# ./kafka-console-consumer.sh --bootstrap-server 192.168.100.64:19092 --topic hahaha
ssssss
注:两个窗口开起来,窗口A输入任何消息,窗口B会看到有消息推送过来,但是有实时的数据,关闭窗口B,往窗口A一直发送数据,再开启窗口B,可以看到consumer消费不到历史数据,想把主题中所有数据都读取出来。加个--from-beginning参数。
查看zookeeper上信息
查看kafka日志
server.log #kafka的运行日志
state-change.log #kafka他是用zookeeper来保存状态,所以他可能会进行切换,切换的日志就保存在这里
controller.log #kafka选择一个节点作为“controller”,当发现有节点down掉的时候它负责在游泳分区的所有节点中选择新的leader,这使得Kafka可以批量的高效的管理所有分区节点的主从关系。如果controller down掉了,活着的节点中的一个会备切换为新的controller
参考:
https://www.cnblogs.com/diaozhaojian/p/10490741.html
https://www.cnblogs.com/luotianshuai/p/5206662.html
https://blog.csdn.net/qq_36602071/article/details/128099513
https://www.cnblogs.com/r-xing/p/16547836.html
https://blog.csdn.net/weixin_39025362/article/details/108420492