【转】Caffe的solver文件配置

http://blog.csdn.net/czp0322/article/details/52161759

solver.prototxt

今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义。

DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题。sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而达到最小化loss,实际上就是迭代优化算法中的参数。

Caffe的solver类提供了6种优化算法,配置文件中可以通过type关键字设置:

  • Stochastic Gradient Descent (type: “SGD”)
  • AdaDelta (type: “AdaDelta”)
  • Adaptive Gradient (type: “AdaGrad”)
  • Adam (type: “Adam”)
  • Nesterov’s Accelerated Gradient (type: “Nesterov”)
  • RMSprop (type: “RMSProp”)

简单地讲,solver就是一个告诉caffe你需要网络如何被训练的一个配置文件。

Solver.prototxt 流程

  1. 首先设计好需要优化的对象,以及用于学习的训练网络和测试网络的prototxt文件(通常是train.prototxt和test.prototxt文件)
  2. 通过forward和backward迭代进行优化来更新参数
  3. 定期对网络进行评价
  4. 优化过程中显示模型和solver的状态

solver参数

base_lr

这个参数代表的是此网络最开始的学习速率(Beginning Learning rate),一般是个浮点数,根据机器学习中的知识,lr过大会导致不收敛,过小会导致收敛过慢,所以这个参数设置也很重要。

lr_policy

这个参数代表的是learning rate应该遵守什么样的变化规则,这个参数对应的是字符串,选项及说明如下:

  • “step” - 需要设置一个stepsize参数,返回base_lr * gamma ^ ( floor ( iter / stepsize ) ),iter为当前迭代次数
  • “multistep” - 和step相近,但是需要stepvalue参数,step是均匀等间隔变化,而multistep是根据stepvalue的值进行变化
  • “fixed” - 保持base_lr不变
  • “exp” - 返回base_lr * gamma ^ iter, iter为当前迭代次数
  • “poly” - 学习率进行多项式误差衰减,返回 base_lr ( 1 - iter / max_iter ) ^ ( power )
  • “sigmoid” - 学习率进行sigmod函数衰减,返回 base_lr ( 1/ 1+exp ( -gamma * ( iter - stepsize ) ) )

gamma

这个参数就是和learning rate相关的,lr_policy中包含此参数的话,需要进行设置,一般是一个实数。

stepsize

This parameter indicates how often (at some iteration count) that we should move onto the next “step” of training. This value is a positive integer.

stepvalue

This parameter indicates one of potentially many iteration counts that we should move onto the next “step” of training. This value is a positive integer. There are often more than one of these parameters present, each one indicated the next step iteration.

max_iter

最大迭代次数,这个数值告诉网络何时停止训练,太小会达不到收敛,太大会导致震荡,为正整数。

momentum

上一次梯度更新的权重,real fraction

weight_decay

权重衰减项,用于防止过拟合。

solver_mode

选择CPU训练或者GPU训练。

snapshot

训练快照,确定多久保存一次model和solverstate,positive integer。

snapshot_prefix

snapshot的前缀,就是model和solverstate的命名前缀,也代表路径。

net

path to prototxt (train and val)

test_iter

每次test_interval的test的迭代次数,假设测试样本总数为10000张图片,一次性执行全部的话效率很低,所以将测试数据分为几个批次进行测试,每个批次的数量就是batch_size。如果batch_size=100,那么需要迭代100次才能将10000个数据全部执行完,所以test_iter设置为100。

test_interval

测试间隔,每训练多少次进行一次测试。

display

间隔多久对结果进行输出

iter_size

这个参数乘上train.prototxt中的batch size是你实际使用的batch size。 相当于读取batchsize * itersize个图像才做一下gradient decent。 这个参数可以规避由于gpu内存不足而导致的batchsize的限制 因为你可以用多个iteration做到很大的batch 即使单次batch有限。

average_loss

取多次foward的loss作平均,进行显示输出。

FCN的solver.prototxt文件

train_net: "train.prototxt"
test_net: "val.prototxt"
test_iter: 736
# make test net, but don't invoke it from the solver itself
test_interval: 999999999
display: 20
average_loss: 20
lr_policy: "fixed"
# lr for unnormalized softmax
base_lr: 1e-14
# high momentum
momentum: 0.99
# no gradient accumulation
iter_size: 1
max_iter: 100000
weight_decay: 0.0005
snapshot: 4000
snapshot_prefix: "snapshot/train"
test_initialization: false

 

posted @ 2017-07-27 08:33  BlueOceans  阅读(478)  评论(0编辑  收藏  举报