Numpy手撸神经网络实现线性回归
简介
在深度学习理论学习之后,我们常常会直接使用深度学习框架(如PaddlePaddle、PyTorch或TensorFlow)来构建模型,而忽略了底层各种层结构的实现。但对于深度学习的学习者来说,是否能够亲手编写一个简单的模型呢?本文将介绍如何使用NumPy手动实现一个神经网络模型来进行线性回归任务。
目标
本文的目标是使用手动实现的神经网络模型来拟合目标曲线,其中目标曲线由函数f(x) = sin(x)生成。
拟合结果如下图所示:
实现思路
在深度学习框架中,数据通常以张量(tensor)的形式进行处理,但为了简化起见,我们将数据的输入和输出都使用NumPy的ndarray
格式传递。本节将包含以下主要类的实现:
1. Tensor和初始化
首先,我们需要定义一个名为Tensor
的类,用于保存数据和梯度。此类具有data
属性用于存储数据和grad
属性用于存储梯度。
import numpy as np
class Tensor:
def __init__(self, shape):
self.data = np.zeros(shape=shape, dtype=np.float32) # 用于存放数据
self.grad = np.zeros(shape=shape, dtype=np.float32) # 用于存放梯度
def clear_grad(self):
self.grad = np.zeros_like(self.grad)
def __str__(self):
return "Tensor shape: {}, data: {}".format(self.data.shape, self.data)
我们还定义了一个初始化器(Initializer
)基类,以及两种初始化器:Constant
和Normal
。这些初始化器用于初始化层的参数。
2. Layer
在深度学习中,层是神经网络的基本组件。我们实现了两种层:全连接层(Linear
)和ReLU激活函数(ReLU
)。
# 为了使层能够组建起来,实现前向传播和反向传播,首先定义层的基类Layer
# Layer的几个主要方法说明:
# forward: 实现前向传播
# backward: 实现反向传播
# parameters: 返回该层的参数,传入优化器进行优化
class Layer:
def __init__(self, name='layer', *args, **kwargs):
self.name = name
def forward(self, *args, **kwargs):
raise NotImplementedError
def backward(self):
raise NotImplementedError
def parameters(self):
return []
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def __str__(self):
return self.name
class Linear(Layer):
"""
input X, shape: [N, C]
output Y, shape: [N, O]
weight W, shape: [C, O]
bias b, shape: [1, O]
grad dY, shape: [N, O]
forward formula:
Y = X @ W + b # @表示矩阵乘法
backward formula:
dW = X.T @ dY
db = sum(dY, axis=0)
dX = dY @ W.T
"""
def __init__(
self,
in_features,
out_features,
name='linear',
weight_attr=Normal(),
bias_attr=Constant(),
*args,
**kwargs
):
super().__init__(name=name, *args, **kwargs)
self.weights = Tensor((in_features, out_features))
self.weights.data = weight_attr(self.weights.data.shape)
self.bias = Tensor((1, out_features))
self.bias.data = bias_attr(self.bias.data.shape)
self.input = None
def forward(self, x):
self.input = x
output = np.dot(x, self.weights.data) + self.bias.data
return output
def backward(self, gradient):
self.weights.grad += np.dot(self.input.T, gradient) # dy / dw
self.bias.grad += np.sum(gradient, axis=0, keepdims=True) # dy / db
input_grad = np.dot(gradient, self.weights.data.T) # dy / dx
return input_grad
def parameters(self):
return [self.weights, self.bias]
def __str__(self):
string = "linear layer, weight shape: {}, bias shape: {}".format(self.weights.data.shape, self.bias.data.shape)
return string
class ReLU(Layer):
"""
forward formula:
relu = x if x >= 0
= 0 if x < 0
backwawrd formula:
grad = gradient * (x > 0)
"""
def __init__(self, name='relu', *args, **kwargs):
super().__init__(name=name, *args, **kwargs)
self.activated = None
def forward(self, x):
x[x < 0] = 0
self.activated = x
return self.activated
def backward(self, gradient):
return gradient * (self.activated > 0)
这些层具有前向传播和反向传播的功能,以及参数的存储。
3. 模型组网
在这一部分,我们定义了一个名为Sequential
的类,用于将多个层按顺序组成神经网络模型。该类允许我们逐层前向传播和反向传播。
# 模型组网的功能是将层串起来,实现数据的前向传播和梯度的反向传播
# 添加层的时候,按照顺序添加层的参数
# Sequential方法说明:
# add: 向组网中添加层
# forward: 按照组网构建的层顺序,依次前向传播
# backward: 接收损失函数的梯度,按照层的逆序反向传播
class Sequential:
def __init__(self, *args, **kwargs):
self.graphs = []
self._parameters = []
for arg_layer in args:
if isinstance(arg_layer, Layer):
self.graphs.append(arg_layer)
self._parameters += arg_layer.parameters()
def add(self, layer):
assert isinstance(layer, Layer), "The type of added layer must be Layer, but got {}.".format(type(layer))
self.graphs.append(layer)
self._parameters += layer.parameters()
def forward(self, x):
for graph in self.graphs:
x = graph(x)
return x
def backward(self, grad):
# grad backward in inverse order of graph
for graph in self.graphs[::-1]:
grad = graph.backward(grad)
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def __str__(self):
string = 'Sequential:\n'
for graph in self.graphs:
string += graph.__str__() + '\n'
return string
def parameters(self):
return self._parameters
4. 优化器
优化器用于根据梯度来更新模型的参数。我们实现了带有动量的随机梯度下降优化器(SGD
)。
# 优化器主要完成根据梯度来优化参数的任务,其主要参数有学习率和正则化类型和正则化系数
# Optimizer主要方法:
# step: 梯度反向传播后调用,该方法根据计算出的梯度,对参数进行优化
# clear_grad: 模型调用backward后,梯度会进行累加,如果已经调用step优化过参数,需要将使用过的梯度清空
# get_decay: 根据不同的正则化方法,计算出正则化惩罚值
class Optimizer:
"""
optimizer base class.
Args:
parameters (Tensor): parameters to be optimized.
learning_rate (float): learning rate. Default: 0.001.
weight_decay (float): The decay weight of parameters. Defaylt: 0.0.
decay_type (str): The type of regularizer. Default: l2.
"""
def __init__(self, parameters, learning_rate=0.001, weight_decay=0.0, decay_type='l2'):
assert decay_type in ['l1', 'l2'], "only support decay_type 'l1' and 'l2', but got {}.".format(decay_type)
self.parameters = parameters
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.decay_type = decay_type
def step(self):
raise NotImplementedError
def clear_grad(self):
for p in self.parameters:
p.clear_grad()
def get_decay(self, g):
if self.decay_type == 'l1':
return self.weight_decay
elif self.decay_type == 'l2':
return self.weight_decay * g
# 基本的梯度下降法为(不带正则化):
# W = W - learn_rate * dW
# 带动量的梯度计算方法(减弱的梯度的随机性):
# dW = (momentum * v) + (1 - momentum) * dW
class SGD(Optimizer):
def __init__(self, momentum=0.9, *args, **kwargs):
super().__init__(*args, **kwargs)
self.momentum = momentum
self.velocity = []
for p in self.parameters:
self.velocity.append(np.zeros_like(p.grad))
def step(self):
for p, v in zip(self.parameters, self.velocity):
decay = self.get_decay(p.grad)
v = self.momentum * v + p.grad + decay # 动量计算
p.data = p.data - self.learning_rate * v
5. 损失函数
我们定义了均方误差损失函数(MSE
),用于衡量模型预测和真实值之间的差异。
# 优化器主要完成根据梯度来优化参数的任务,其主要参数有学习率和正则化类型和正则化系数
# Optimizer主要方法:
# step: 梯度反向传播后调用,该方法根据计算出的梯度,对参数进行优化
# clear_grad: 模型调用backward后,梯度会进行累加,如果已经调用step优化过参数,需要将使用过的梯度清空
# get_decay: 根据不同的正则化方法,计算出正则化惩罚值
class Optimizer:
"""
optimizer base class.
Args:
parameters (Tensor): parameters to be optimized.
learning_rate (float): learning rate. Default: 0.001.
weight_decay (float): The decay weight of parameters. Defaylt: 0.0.
decay_type (str): The type of regularizer. Default: l2.
"""
def __init__(self, parameters, learning_rate=0.001, weight_decay=0.0, decay_type='l2'):
assert decay_type in ['l1', 'l2'], "only support decay_type 'l1' and 'l2', but got {}.".format(decay_type)
self.parameters = parameters
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.decay_type = decay_type
def step(self):
raise NotImplementedError
def clear_grad(self):
for p in self.parameters:
p.clear_grad()
def get_decay(self, g):
if self.decay_type == 'l1':
return self.weight_decay
elif self.decay_type == 'l2':
return self.weight_decay * g
# 基本的梯度下降法为(不带正则化):
# W = W - learn_rate * dW
# 带动量的梯度计算方法(减弱的梯度的随机性):
# dW = (momentum * v) + (1 - momentum) * dW
class SGD(Optimizer):
def __init__(self, momentum=0.9, *args, **kwargs):
super().__init__(*args, **kwargs)
self.momentum = momentum
self.velocity = []
for p in self.parameters:
self.velocity.append(np.zeros_like(p.grad))
def step(self):
for p, v in zip(self.parameters, self.velocity):
decay = self.get_decay(p.grad)
v = self.momentum * v + p.grad + decay # 动量计算
p.data = p.data - self.learning_rate * v
6. 数据集和数据加载
我们还实现了Dataset
、BatchSampler
和DataLoader
类,用于加载和处理数据。
# 这里仿照PaddlePaddle,Dataset需要实现__getitem__和__len__方法
class Dataset:
def __init__(self, *args, **kwargs):
pass
def __getitem__(self, idx):
raise NotImplementedError("'{}' not implement in class {}"
.format('__getitem__', self.__class__.__name__))
def __len__(self):
raise NotImplementedError("'{}' not implement in class {}"
.format('__len__', self.__class__.__name__))
# 根据dataset和一些设置,生成每个batch在dataset中的索引
class BatchSampler:
def __init__(self, dataset=None, shuffle=False, batch_size=1, drop_last=False):
self.batch_size = batch_size
self.drop_last = drop_last
self.shuffle = shuffle
self.num_data = len(dataset)
if self.drop_last or (self.num_data % batch_size == 0):
self.num_samples = self.num_data // batch_size
else:
self.num_samples = self.num_data // batch_size + 1
indices = np.arange(self.num_data)
if shuffle:
np.random.shuffle(indices)
if drop_last:
indices = indices[:self.num_samples * batch_size]
self.indices = indices
def __len__(self):
return self.num_samples
def __iter__(self):
batch_indices = []
for i in range(self.num_samples):
if (i + 1) * self.batch_size <= self.num_data:
for idx in range(i * self.batch_size, (i + 1) * self.batch_size):
batch_indices.append(self.indices[idx])
yield batch_indices
batch_indices = []
else:
for idx in range(i * self.batch_size, self.num_data):
batch_indices.append(self.indices[idx])
if not self.drop_last and len(batch_indices) > 0:
yield batch_indices
# 根据sampler生成的索引,从dataset中取数据,并组合成一个batch
class DataLoader:
def __init__(self, dataset, sampler=BatchSampler, shuffle=False, batch_size=1, drop_last=False):
self.dataset = dataset
self.sampler = sampler(dataset, shuffle, batch_size, drop_last)
def __len__(self):
return len(self.sampler)
def __call__(self):
self.__iter__()
def __iter__(self):
for sample_indices in self.sampler:
data_list = []
label_list = []
for indice in sample_indices:
data, label = self.dataset[indice]
data_list.append(data)
label_list.append(label)
yield np.stack(data_list, axis=0), np.stack(label_list, axis=0)
线性回归示例
在本节中,我们使用上述定义的类来构建一个简单的神经网络模型,并进行线性回归示例。
1. 提取数据
首先,我们从数据集中提取训练数据,这里使用了一个预先生成的包含目标函数f(x) = sin(x) + 噪声的数据集。
# 提取训练数据
!unzip -oq ~/data/data119921/sin_data.zip
2. 查看数据分布
我们绘制了原始数据的分布图。
import matplotlib.pyplot as plt
%matplotlib inline
x_path = "x.npy"
y_path = "y.npy"
X = np.load(x_path)
Y = np.load(y_path)
plt.scatter(X, Y)
3. 搭建模型,设置超参数
我们定义了一个简单的神经网络模型,包括线性层和ReLU激活函数,并设置了超参数。
# 定义超参数
epoches = 1000
batch_size = 4
learning_rate = 0.01
weight_decay = 0.0
train_number = 100 # 选择的训练数据数量,总共200,这里仅挑选一部分训练,以避免过拟合
# 创建线性回归模型
model = Sequential(
Linear(1, 16, name='linear1'),
ReLU(name='relu1'),
Linear(16, 64, name='linear2'),
ReLU(name='relu2'),
Linear(64, 16, name='linear3'),
Re
LU(name='relu3'),
Linear(16, 1, name='linear4'),
)
opt = SGD(parameters=model.parameters(), learning_rate=learning_rate, weight_decay=weight_decay, decay_type='l2')
loss_fn = MSE()
print(model)
4. 训练
我们使用训练数据集对模型进行训练。
# 挑选部分数据进行训练,绘制数据分布图
indexes = np.arange(X.shape[0])
train_indexes = np.random.choice(indexes, train_number)
X = X[train_indexes]
Y = Y[train_indexes]
plt.scatter(X, Y)
# 构建数据集和数据加载器,开始训练
train_dataset = LinearDataset(X, Y)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, drop_last=True)
for epoch in range(1, epoches):
losses = []
for x, y in train_dataloader:
pred = model(x)
loss = loss_fn(pred, y)
losses.append(loss)
grad = loss_fn.backward()
model.backward(grad)
opt.step()
opt.clear_grad()
print("epoch: {}. loss: {}".format(epoch, np.array(losses).mean()))
5. 验证效果
训练结束后,我们生成一组密集的验证点,绘制曲线以查看模型效果。
# 生成验证点
val_number = 500
X_val = np.linspace(-np.pi, np.pi, val_number).reshape(val_number, 1)
Y_val = np.sin(X_val) * 2
val_dataset = LinearDataset(X_val, Y_val)
val_dataloader = DataLoader(val_dataset, shuffle=False, batch_size=2, drop_last=False)
all_pred = []
for x, y in val_dataloader:
pred = model(x)
all_pred.append(pred)
all_pred = np.vstack(all_pred)
# 绘制真实曲线和模型预测曲线
plt.plot(X_val, Y_val, color='green', label='true')
plt.plot(X_val, all_pred, color='red', label='predict')
plt.legend()
plt.show()
# 打印模型权重
for g in model.graphs:
try:
print(g.name, " weights: ", g.weights.data)
print(g.name, " bias: ", g.bias.data)
except:
# ReLU层没有参数
pass
希望这篇文章对您有所帮助,让您更好地理解深度学习模型的构建和训练过程。如果您有任何问题或需要进一步的解释,请随时提出。
本文由mdnice多平台发布