Elasticsearch Reindex性能提升10倍+实战

文章转载自:
https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484134&idx=1&sn=750249a97c42b2ba22ba6755c79acb10&chksm=eaa82acedddfa3d822a4d3bbfb6dc76f57152705d1cba9fd2d8f4196013c950d9adea079a55f&scene=21#wechat_redirect

1、reindex速率极慢,是否有办法改善?

以下问题来自社区:http://t.cn/RDOcX0O

问题1:reindex和snapshot的速率极慢,是否有办法改善?

reindex和snapshot的速率比用filebeat或者kafka到es的写入速率慢好几个数量级(集群写入性能不存在瓶颈),reindex/snapshot的时候CPU还是IO使用率都很低,是不是集群受什么参数限制了reindex和snapshot的速率?

reindex不管是跨集群还是同集群上都很慢,大约3~5M/s的索引速率,会是什么原因导致的?
问题2:数据量几十个G的场景下,elasticsearch reindex速度太慢,从旧索引导数据到新索引,当前最佳方案是什么?
2、Reindex简介

5.X版本后新增Reindex。

Reindex可以直接在Elasticsearch集群里面对数据进行重建,如果你的mapping因为修改而需要重建,又或者索引设置修改需要重建的时候,借助Reindex可以很方便的异步进行重建,并且支持跨集群间的数据迁移。比如按天创建的索引可以定期重建合并到以月为单位的索引里面去。

当然索引里面要启用_source。

1POST _reindex
2{
3 "source": {
4 "index": "twitter"
5 },
6 "dest": {
7 "index": "new_twitter"
8 }
9}

3、原因分析

reindex的核心做跨索引、跨集群的数据迁移。

慢的原因及优化思路无非包括:

1)批量大小值可能太小。
需要结合堆内存、线程池调整大小;

2)reindex的底层是scroll实现,借助scroll并行优化方式,提升效率;

3)跨索引、跨集群的核心是写入数据,考虑写入优化角度提升效率。

4、Reindex提升效率的方案
4.1 提升批量写入大小值

默认情况下,_reindex使用1000进行批量操作,您可以在source中调整batch_size。

1POST _reindex
2{
3 "source": {
4 "index": "source",
5 "size": 5000
6 },
7 "dest": {
8 "index": "dest",
9 "routing": "=cat"
10 }
11}

批量大小设置的依据:

(1)使用批量索引请求以获得最佳性能。
批量大小取决于数据、分析和集群配置,但一个好的起点是每批处理5-15 MB。

注意,这是物理大小。文档数量不是度量批量大小的好指标。例如,如果每批索引1000个文档,:

1)每个1kb的1000个文档是1mb。

2)每个100kb的1000个文档是100 MB。

这些是完全不同的体积大小。

(2)逐步递增文档容量大小的方式调优。
1)从大约5-15 MB的大容量开始,慢慢增加,直到你看不到性能的提升。然后开始增加批量写入的并发性(多线程等等)。

2)使用kibana、cerebro或iostat、top和ps等工具监视节点,以查看资源何时开始出现瓶颈。如果您开始接收EsRejectedExecutionException,您的集群就不能再跟上了:至少有一个资源达到了容量。要么减少并发性,或者提供更多有限的资源(例如从机械硬盘切换到ssd固态硬盘),要么添加更多节点。

4.2 借助scroll的sliced提升写入效率

Reindex支持Sliced Scroll以并行化重建索引过程。 这种并行化可以提高效率,并提供一种方便的方法将请求分解为更小的部分。
sliced原理(from medcl)

1)用过Scroll接口吧,很慢?如果你数据量很大,用Scroll遍历数据那确实是接受不了,现在Scroll接口可以并发来进行数据遍历了。

2)每个Scroll请求,可以分成多个Slice请求,可以理解为切片,各Slice独立并行,利用Scroll重建或者遍历要快很多倍。
slicing使用举例

slicing的设定分为两种方式:手动设置分片、自动设置分片。

手动设置分片参见官网。

自动设置分片如下:

1POST _reindex?slices=5&refresh
2{
3 "source": {
4 "index": "twitter"
5 },
6 "dest": {
7 "index": "new_twitter"
8 }
9}

slices大小设置注意事项:
1)slices大小的设置可以手动指定,或者设置slices设置为auto,auto的含义是:针对单索引,slices大小=分片数;针对多索引,slices=分片的最小值。

2)当slices的数量等于索引中的分片数量时,查询性能最高效。slices大小大于分片数,非但不会提升效率,反而会增加开销。

3)如果这个slices数字很大(例如500),建议选择一个较低的数字,因为过大的slices 会影响性能。
4.3 ES副本数设置为0

如果要进行大量批量导入,请考虑通过设置index.number_of_replicas来禁用副本:0。

主要原因在于:

复制文档时,将整个文档发送到副本节点,并逐字重复索引过程。 这意味着每个副本都将执行分析,索引和潜在合并过程。

相反,如果您使用零副本进行索引,然后在提取完成时启用副本,则恢复过程本质上是逐字节的网络传输。 这比复制索引过程更有效。

1PUT /my_logs/_settings
2{
3 "number_of_replicas": 1
4}

4.4 增加refresh间隔

如果你的搜索结果不需要接近实时的准确性,考虑先不要急于索引刷新refresh。可以将每个索引的refresh_interval到30s。

如果正在进行大量数据导入,可以通过在导入期间将此值设置为-1来禁用刷新。完成后不要忘记重新启用它!

设置方法:

1PUT /my_logs/_settings
2{ "refresh_interval": -1 }

5、小结

实践证明,比默认设置reindex速度能提升10倍+。

遇到类似问题,多从官网、原理甚至源码的角度思考,逐步拆解分析。

只要思维不滑坡,办法总比问题多!

posted @ 2020-05-13 13:53  哈喽哈喽111111  阅读(2084)  评论(0编辑  收藏  举报