sobel算子
//==============================================================
// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: MIT
// =============================================================
#include <chrono>
#include <cmath>
#include <iostream>
#include <sycl/sycl.hpp>
#include "device_selector.hpp"
// dpc_common.hpp can be found in the dev-utilities include folder.
// e.g., $ONEAPI_ROOT/dev-utilities/<version>/include/dpc_common.hpp
#include "dpc_common.hpp"
// stb/*.h files can be found in the dev-utilities include folder.
// e.g., $ONEAPI_ROOT/dev-utilities/<version>/include/stb/*.h
#define STB_IMAGE_IMPLEMENTATION
#include "stb/stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb/stb_image_write.h"
using namespace std;
using namespace sycl;
// Few useful acronyms.
constexpr auto sycl_read = access::mode::read;
constexpr auto sycl_write = access::mode::write;
constexpr auto sycl_device = access::target::device;
static void ReportTime(const string &msg, event e) {
cl_ulong time_start =
e.get_profiling_info<info::event_profiling::command_start>();
cl_ulong time_end =
e.get_profiling_info<info::event_profiling::command_end>();
double elapsed = (time_end - time_start) / 1e6;
cout << msg << elapsed << " milliseconds\n";
}
// SYCL does not need any special mark-up for functions which are called from
// SYCL kernel and defined in the same compilation unit. SYCL compiler must be
// able to find the full call graph automatically.
// always_inline as calls are expensive on Gen GPU.
// Notes:
// - coeffs can be declared outside of the function, but still must be constant
// - SYCL compiler will automatically deduce the address space for the two
// pointers; sycl::multi_ptr specialization for particular address space
// can used for more control
__attribute__((always_inline)) static void ApplyFilter(uint8_t *src_image,
uint8_t *dst_image,
int i) {
int row,col;
row=int(i/510);
col=i%510;
float temp,temp1,temp2;
temp = (0 * src_image[row*512+col]) + (2.0f * src_image[row*512+col + 1]) +
(2.0f * src_image[row*512+col + 2])+(0 * src_image[(row+1)*512+col]) + (2.0f * src_image[(row+1)*512+col + 1]) +
(2.0f * src_image[(row+1)*512+col + 2])+(0 * src_image[(row+2)*512+col]) + (2.0f * src_image[(row+2)*512+col + 1]) +
(2.0f * src_image[(row+2)*512+col + 2]);
temp = (1.0f * src_image[row*512+col]) + (2.0f * src_image[row*512+col + 1]) +
(1.0f * src_image[row*512+col + 2])+(0 * src_image[(row+1)*512+col]) + (0 * src_image[(row+1)*512+col + 1]) +
(0 * src_image[(row+1)*512+col + 2])+(-1.0f * src_image[(row+2)*512+col]) + (-2.0f * src_image[(row+2)*512+col + 1]) +
(-1.0f * src_image[(row+2)*512+col + 2]);
temp1 = (-1.0f * src_image[row*512+col]) + (0.0f * src_image[row*512+col + 1]) +
(1.0f * src_image[row*512+col + 2])+(-2.0f * src_image[(row+1)*512+col]) + (0 * src_image[(row+1)*512+col + 1]) +
(2.0f * src_image[(row+1)*512+col + 2])+(-1.0f * src_image[(row+2)*512+col]) + (-0.0f * src_image[(row+2)*512+col + 1]) +
(1.0f * src_image[(row+2)*512+col + 2]);
//dst_image[i] = temp;
temp2=sqrt(temp*temp+temp1*temp1);
dst_image[i] = temp2 > 255 ? 255 : temp2;
}
// This is alternative (to a lambda) representation of a SYCL kernel.
// Internally, compiler transforms lambdas into instances of a very simlar
// class. With functors, capturing kernel parameters is done manually via the
// constructor, unlike automatic capturing with lambdas.
class SepiaFunctor {
public:
// Constructor captures needed data into fields
SepiaFunctor(
accessor<uint8_t, 1, sycl_read, sycl_device> &image_acc_,
accessor<uint8_t, 1, sycl_write, sycl_device> &image_exp_acc_)
: image_acc(image_acc_), image_exp_acc(image_exp_acc_) {}
// The '()' operator is the actual kernel
void operator()(id<1> i) const {
ApplyFilter(image_acc.get_pointer(), image_exp_acc.get_pointer(), i.get(0));
}
private:
// Captured values:
accessor<uint8_t, 1, sycl_read, sycl_device> image_acc;
accessor<uint8_t, 1, sycl_write, sycl_device> image_exp_acc;
};
int main(int argc, char **argv) {
// loading the input image
int img_width, img_height, channels;
uint8_t *image = stbi_load("hsilver512.png", &img_width, &img_height, &channels, 0);
if (image == NULL) {
cout << "Error in loading the image\n";
exit(1);
}
cout << "Loaded image with a width of " << img_width << ", a height of "
<< img_height << " and " << channels << " channels\n";
img_height=img_height-2;
img_width=img_width-2;
size_t num_pixels = (img_width) * (img_height);
size_t img_size = (img_width) * (img_height) * channels;
// allocating memory for output images
uint8_t *image_ref = new uint8_t[img_size];
uint8_t *image_exp1 = new uint8_t[img_size];
uint8_t *image_exp2 = new uint8_t[img_size];
cout << img_size << " channels\n";
memset(image_ref, 0, img_size * sizeof(uint8_t));
memset(image_exp1, 0, img_size * sizeof(uint8_t));
memset(image_exp2, 0, img_size * sizeof(uint8_t));
// Create a device selector which rates available devices in the preferred
// order for the runtime to select the highest rated device
// Note: This is only to illustrate the usage of a custom device selector.
// default_selector can be used if no customization is required.
MyDeviceSelector sel;
// Using these events to time command group execution
event e1, e2;
// Wrap main SYCL API calls into a try/catch to diagnose potential errors
try {
// Create a command queue using the device selector and request profiling
auto prop_list = property_list{property::queue::enable_profiling()};
queue q(sel, dpc_common::exception_handler, prop_list);
// See what device was actually selected for this queue.
cout << "Running on " << q.get_device().get_info<info::device::name>()
<< "\n";
// Create SYCL buffer representing source data .
// By default, this buffers will be created with global_buffer access
// target, which means the buffer "projection" to the device (actual
// device memory chunk allocated or mapped on the device to reflect
// buffer's data) will belong to the SYCL global address space - this
// is what host data usually maps to. Other address spaces are:
// private, local and constant.
// Notes:
// - access type (read/write) is not specified when creating a buffer -
// this is done when actual accessor is created
// - there can be multiple accessors to the same buffer in multiple command
// groups
// - 'image' pointer was passed to the constructor, so this host memory
// will be used for "host projection", no allocation will happen on host
buffer image_buf(image, range(img_size));
// This is the output buffer device writes to
buffer image_buf_exp1(image_exp1, range(img_size));
cout << "Submitting lambda kernel...\n";
// Submit a command group for execution. Returns immediately, not waiting
// for command group completion.
e1 = q.submit([&](auto &h) {
// This lambda defines a "command group" - a set of commands for the
// device sharing some state and executed in-order - i.e. creation of
// accessors may lead to on-device memory allocation, only after that
// the kernel will be enqueued.
// A command group can contain at most one parallel_for, single_task or
// parallel_for_workgroup construct.
accessor image_acc(image_buf, h, read_only);
accessor image_exp_acc(image_buf_exp1, h, write_only);
// This is the simplest form sycl::handler::parallel_for -
// - it specifies "flat" 1D ND range(num_pixels), runtime will select
// local size
// - kernel lambda accepts single sycl::id argument, which has very
// limited API; see the spec for more complex forms
// the lambda parameter of the parallel_for is the kernel, which
// actually executes on device
h.parallel_for(range<1>(num_pixels), [=](auto i) {
ApplyFilter(image_acc.get_pointer(), image_exp_acc.get_pointer(), i);
});
});
q.wait_and_throw();
cout << "Submitting functor kernel...\n";
buffer image_buf_exp2(image_exp2, range(img_size));
// Submit another command group. This time kernel is represented as a
// functor object.
e2 = q.submit([&](auto &h) {
accessor image_acc(image_buf, h, read_only);
accessor image_exp_acc(image_buf_exp2, h, write_only);
SepiaFunctor kernel(image_acc, image_exp_acc);
h.parallel_for(range<1>(num_pixels), kernel);
});
cout << "Waiting for execution to complete...\n";
q.wait_and_throw();
} catch (sycl::exception e) {
// This catches only synchronous exceptions that happened in current thread
// during execution. The asynchronous exceptions caused by execution of the
// command group are caught by the asynchronous exception handler
// registered. Synchronous exceptions are usually those which are thrown
// from the SYCL runtime code, such as on invalid constructor arguments. An
// example of asynchronous exceptions is error occurred during execution of
// a kernel. Make sure sycl::exception is caught, not std::exception.
cout << "SYCL exception caught: " << e.what() << "\n";
return 1;
}
cout << "Execution completed\n";
// report execution times:
ReportTime("Lambda kernel time: ", e1);
ReportTime("Functor kernel time: ", e2);
clock_t startTime,endTime;
startTime = clock();//计时开始
// get reference result
for (size_t i = 0; i < num_pixels; i++) {
ApplyFilter(image, image_ref, i);
}
endTime = clock();//计时结束
stbi_write_png("sepia_ref.png", img_width, img_height, channels, image_ref,
img_width * channels);
stbi_write_png("sepia_lambda.png", img_width, img_height, channels,
image_exp1, img_width * channels);
stbi_write_png("sepia_functor.png", img_width, img_height, channels,
image_exp2, img_width * channels);
stbi_image_free(image);
delete[] image_ref;
delete[] image_exp1;
delete[] image_exp2;
cout << "The run time is: " <<(double)(endTime - startTime) / CLOCKS_PER_SEC << "s" << std::endl;
cout << "Sepia tone successfully applied to image:[" << argv[1] << "]\n";
return 0;
}