python语法到底多精妙?八大核心语句,带你深度了解
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
1. for - else
什么?不是 if 和 else 才是原配吗?No,你可能不知道,else 是个脚踩两只船的家伙,for 和 else 也是一对,而且是合法的。十大装B语法,for-else 绝对算得上南无湾!
>> for i in [1,2,3,4]: print(i) else: print(i, '我是else') 1 2 3 4 我是else
如果在 for 和 else 之间(循环体内)有第三者 if 插足,也不会影响 for 和 else 的关系。因为 for 的级别比 if 高,else 又是一个攀附权贵的家伙,根本不在乎是否有 if,以及是否执行了满足 if 条件的语句。else 的眼里只有 for,只要 for 顺利执行完毕,else 就会屁颠儿屁颠儿地跑一遍:
>>> for i in [1,2,3,4]: if i > 2: print(i) else: print(i, '我是else') 4 我是else
那么,如何拆散这对冤家呢?只有当 for 循环被 break 语句中断之后,才会跳过 else 语句:
>>> for i in [1,2,3,4]: if i>2: print(i) break else: print(i, '我是else')
2.lambda函数
lambda 听起来很高大上,其实就是匿名函数(了解js的同学一定很熟悉匿名函数)。匿名函数的应用场景是什么呢?就是仅在定义匿名函数的地方使用这个函数,其他地方用不到,所以就不需要给它取个阿猫阿狗之类的名字了。下面是一个求和的匿名函数,输入参数有两个,x和y,函数体就是x+y,省略了return关键字。
>>> lambda x,y: x+y <function <lambda> at 0x000001B2DE5BD598> >>> (lambda x,y: x+y)(3,4)
匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。
>>> a = [{'name':'B', 'age':50}, {'name':'A', 'age':30}, {'name':'C', 'age':40}] >>> sorted(a, key=lambda x:x['name']) # 按姓名排序 [{'name': 'A', 'age': 30}, {'name': 'B', 'age': 50}, {'name': 'C', 'age': 40}] >>> sorted(a, key=lambda x:x['age']) # 按年龄排序 [{'name': 'A', 'age': 30}, {'name': 'C', 'age': 40}, {'name': 'B', 'age': 50}]
再举一个数组元素求平方的例子,这次用map函数:
>>> a = [1,2,3] >>> for item in map(lambda x:x*x, a): print(item, end=', ') 1, 4, 9,
3.列表推导式
在各种稀奇古怪的语法中,列表推导式的使用频率应该时最高的,对于代码的简化效果也非常明显。比如,求列表各元素的平方,通常应该这样写(当然也有其他写法,比如使用map函数):
>>> a = [1, 2, 3, 4, 5] >>> result = list() >>> for i in a: result.append(i*i) >>> result [1, 4, 9, 16, 25]
如果使用列表推导式,看起来就舒服多了:
>>> a = [1, 2, 3, 4, 5] >>> result = [i*i for i in a] >>> result [1, 4, 9, 16, 25] # 兄弟们学习python,有时候不知道怎么学,从哪里开始学。 # 掌握了基础知识或者做了两个案例后,不知道下一步怎么学习。 # 那么对于这些好兄弟,我准备了大量的免费视频教程,数百本PDF电子书籍,以及源代码! # 直接在这个裙 708525271 自取就好了
4.列表索引的各种骚操作
Python 引入负整数作为数组的索引,这绝对是喜大普奔之举。想想看,在C/C++中,想要数组最后一个元素,得先取得数组长度,减一之后做索引,严重影响了思维的连贯性。Python语言之所以获得成功,我个人觉得,在诸多因素里面,列表操作的便捷性是不容忽视的一点。请看:
>>> a = [0, 1, 2, 3, 4, 5] >>> a[2:4] [2, 3] >>> a[3:] [3, 4, 5] >>> a[1:] [1, 2, 3, 4, 5] >>> a[:] [0, 1, 2, 3, 4, 5] >>> a[::2] [0, 2, 4] >>> a[1::2] [1, 3, 5] >>> a[-1] 5 >>> a[-2] 4 >>> a[1:-1] [1, 2, 3, 4] >>> a[::-1] [5, 4, 3, 2, 1, 0]
如果说,这些你都很熟悉,也经常用,那么接下来这个用法,你一定会感觉很神奇:
>>> a = [0, 1, 2, 3, 4, 5] >>> b = ['a', 'b'] >>> a[2:2] = b >>> a [0, 1, 'a', 'b', 2, 3, 4, 5] >>> a[3:6] = b >>> a [0, 1, 'a', 'a', 'b', 4, 5]
5.三元表达式
熟悉 C/C++ 的程序员,初上手 python 时,一定会怀念经典的三元操作符,因为想表达同样的思想,用python 写起来似乎更麻烦。比如:
>>> y = 5 >>> if y < 0: print('y是一个负数') else: print('y是一个非负数') y是一个非负数
其实,python 是支持三元表达式的,只是稍微怪异了一点,类似于我们山东人讲话。比如,山东人最喜欢用倒装句:打球去吧,要是不下雨的话;下雨,咱就去自习室。翻译成三元表达式就是:
打球去吧 if 不下雨 else 去自习室
来看看三元表达式具体的使用:
>>> y = 5 >>> print('y是一个负数' if y < 0 else 'y是一个非负数') y是一个非负数
python 的三元表达式也可以用来赋值:
>>> y = 5 >>> x = -1 if y < 0 else 1 >>> x 1
6.巧用断言assert
所谓断言,就是声明表达式的布尔值必须为真的判定,否则将触发 AssertionError 异常。严格来讲,assert是调试手段,不宜使用在生产环境中,但这不影响我们用断言来实现一些特定功能,比如,输入参数的格式、类型验证等。
>>> def i_want_to_sleep(delay): assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数' print('开始睡觉') time.sleep(delay) print('睡醒了') >>> i_want_to_sleep(1.1) 开始睡觉 睡醒了 >>> i_want_to_sleep(2) 开始睡觉 睡醒了 >>> i_want_to_sleep('2') Traceback (most recent call last): File "<pyshell#247>", line 1, in <module> i_want_to_sleep('2') File "<pyshell#244>", line 2, in i_want_to_sleep assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数' AssertionError: 函数参数必须为整数或浮点数
7.while语句
这个就很常见了,几乎是学过一点python语言的小伙伴都会知道while语句的啦,如:
我用while写了一个小的游戏
import random answer = random.randint(1, 100) counter = 0 while True: counter += 1 number = int(input('请输入: ')) if number < answer: print('大一点') elif number > answer: print('小一点') else: print('恭喜你猜对了!') break print('你总共猜了%d次' % counter) if counter > 7: print('你的智商余额明显不足')
8.with - as
with 这个词儿,英文里面不难翻译,但在 Python 语法中怎么翻译,我还真想不出来,大致上是一种上下文管理协议。作为初学者,不用关注 with 的各种方法以及机制如何,只需要了解它的应用场景就可以了。with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:
fp = open(r"D:\CSDN\Column\temp\mpmap.py", 'r') try: contents = fp.readlines() finally: fp.close()
如果使用 with - as,那就优雅多了:
>>> with open(r"D:\CSDN\Column\temp\mpmap.py", 'r') as fp: contents = fp.readlines()
好了,你如果以上都会的话,那我要给你一个大大的赞(我绝对不会告诉你,我都不知道assert,哈哈哈哈)
今天的分享到这就结束了,下次再见哈!