一、前言
四步过程维度建模由Kimball提出,可以做为业务梳理、数据梳理后进行多维数据模型设计的指导流程,但是不能作为数据仓库系统建设的指导流程。本文就相关流程及核心问题进行解读。
二、数据仓库建设流程
以下流程是根据业务系统、组织结构、团队结构现状设定的数据仓库系统建设流程,适合系统结构复杂,团队协作复杂,人员结构复杂的情况,并且数据仓库建设团队和业务系统建设团队不同的情况。具体流程如下图所示:
图1 数据仓库系统建设流程
三、四步维度建模
Kimball四步建模流程适合上述数据仓库系统建设流程中模型设计环节,重点解决数据粒度、维度设计和事实表设计问题。四步建模流程如下图所示:
三、流程解读
3.1 如何确定粒度
最细粒度和聚合粒度之争?留给大家来辩驳吧,大家可以在评论中发表各自的观点。
3.1 如何标识维度
标识维度解决的是业务人员如何描述来自业务过程的数据,维度用来表示“谁、什么、何时、何处、为何、如何”的问题。以竞价广告检索流程而言就是客户通过什么渠道、什么样的客户端(OS、IP)、检索了什么样的内容、请求最终有谁受理等。
3.2 如何标识事实
标识事实其实是在确定业务过程的度量指标,指标何来?哪些指标必须保留,那些指标必须删除,待定指标如何处理?必须综合考虑业务用户需求和现实数据的实际情况。事实表的设计完全依赖于物理活动,不受可能产生的最终报表的影响,报表只是事实表设计的参考视角。
四、未完待续
数据仓库专题作为项目笔记,持续更新中,敬请关注。
作者:张子良
出处:http://www.cnblogs.com/hadoopdev
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】