缓存雪崩问题及处理方案

一、什么是缓存雪崩

    缓存雪崩就是指缓存由于某些原因(比如 宕机、cache服务挂了或者不响应)整体crash掉了,导致大量请求到达后端数据库,从而导致数据库崩溃,整个系统崩溃,发生灾难。
 
下面的就是一个雪崩的简单过程:
1、redis集群彻底崩溃
2、缓存服务大量对redis的请求hang住,占用资源
3、缓存服务大量的请求打到源头服务去查询mysql,直接打死mysql
4、源头服务因为mysql被打死也崩溃,对源服务的请求也hang住,占用资源
5、缓存服务大量的资源全部耗费在访问redis和源服务无果,最后自己被拖死,无法提供服务
6、nginx无法访问缓存服务,redis和源服务,只能基于本地缓存提供服务,但是缓存过期后,没有数据提供
7、网站崩溃
 
雪崩问题在国外叫做:stampeding herd(奔逃的野牛),指的的cache crash后,流量会像奔逃的野牛一样,打向后端。
 
 
 
导致这种现象可能的原因:
1、例如 “缓存并发”,“缓存穿透”,“缓存颠簸” 等问题,这些问题也可能会被恶意攻击者所利用。
2、例如 某个时间点内,系统预加载的缓存周期性集中失效了。解决方法:可以通过设置不同的过期时间,来错开缓存过期,从而避免缓存集中失效。
 
 
二、预防和解决缓存雪崩问题
1)事前解决方案
  • 保证缓存层服务高可用性
和飞机都有多个引擎一样,如果缓存层设计成高可用的,即使个别节点、个别机器、甚至是机房宕掉,依然可以提供服务,例如 Redis Sentinel 和 Redis Cluster 都实现了高可用。
部署方式一:双机房部署,一套Redis Cluster,部分机器在一个机房,另一部分机器在另外一个机房。
部署方式二:双机房部署,两套Redis Cluster,两套Redis Cluster之间做一个数据同步。
 
 
2)事中解决方案:
  • 对缓存访问进行 资源隔离(熔断)、Fail Silent 降级
避免所有资源hang在访问缓存上,当判断缓存出现问题,则自动进行熔断并按预设进行降级操作。
 
  • ehcache本地缓存
应对零散的缓存中数据被清除掉的现象,另外一个主要预防缓存彻底崩溃,ehcache的缓存还能支撑一阵。
 
 
  • 对源服务访问进行 限流、资源隔离(熔断)、Stubbed 降级。
无论是缓存层还是存储层都会有出错的概率,可以将它们视同为资源。作为并发量较大的系统,假如有一个资源不可用,可能会造成线程全部 hang 在这个资源上,造成整个系统不可用。
相信大家一定遇到过这样的页面:这些应该就是淘宝的降级策略。
 
降级在高并发系统中是非常正常的:比如推荐服务中,如果个性化推荐服务不可用,可以降级补充热点数据,不至于造成前端页面是开天窗。
 
在实际项目中,我们需要对重要的资源 ( 例如 Redis、 MySQL、 Hbase、外部接口 ) 都进行隔离,让每种资源都单独运行在自己的线程池中,即使个别资源出现了问题,对其他服务没有影响。但是线程池如何管理,比如如何关闭资源池,开启资源池,资源池阀值管理,这些做起来还是相当复杂的,这里推荐一个 Java 依赖隔离工具 Hystrix(https://github.com/Netflix/Hystrix)。
 
 
3)事后解决方案
  • Redis数据备份和恢复
  • 快速缓存预热
 
 
4)提前演练
在项目上线前,演练缓存层宕掉后,应用以及后端的负载情况以及可能出现的问题,在此基础上做一些预案设定。

posted on 2018-11-18 21:56  hadley2012  阅读(4197)  评论(0编辑  收藏  举报

导航