CVE-2023-31436 数组越界漏洞
CVE-2023-31436 数组越界漏洞
drawio: CVE-2023-31436.drawio
漏洞分析
在 qfq_change_class 里面如果用户态没有提供 TCA_QFQ_LMAX,就会取网卡的 mtu 作为 lmax 且不做校验,loopback 网卡的 mtu 可以被设置为 2^31-1
// qfq_change_class() in net/sched/sch_qfq.c
// ..
if (tb[TCA_QFQ_LMAX]) {
lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
pr_notice("qfq: invalid max length %u\n", lmax);
return -EINVAL;
}
} else
lmax = psched_mtu(qdisc_dev(sch)); // [1]
// ..
qfq_init_agg(q, new_agg, lmax, weight); // [2]
}
// ..
qfq_add_to_agg(q, new_agg, cl); // [3]
qfq_update_agg 中会使用 lmax ,代码通过 lmax 计算 i ,然后将 q->groups[i] 的地址保存到 agg->grp,之后就会通过 agg->grp 使用该对象。
// qfq_update_agg() in net/sched/sch_qfq.c
agg->budgetmax = new_num_classes * agg->lmax;
new_agg_weight = agg->class_weight * new_num_classes;
agg->inv_w = ONE_FP/new_agg_weight;
if (agg->grp == NULL) {
int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
q->min_slot_shift);
agg->grp = &q->groups[i]; // [4]
}
查看结构体定义可以知道 q->groups 的大小为 25,控制 i 大于 25 就会越界访问。
#define QFQ_MAX_INDEX 24
struct qfq_sched {
struct tcf_proto __rcu *filter_list;
struct tcf_block *block;
struct Qdisc_class_hash clhash;
u64 oldV, V; /* Precise virtual times. */
struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
u32 wsum; /* weight sum */
u32 iwsum; /* inverse weight sum */
unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
u32 max_agg_classes; /* Max number of classes per aggr. */
struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
};
diff --git a/net/sched/sch_qfq.c b/net/sched/sch_qfq.c
index cf5ebe43b3b4e..02098a02943eb 100644
--- a/net/sched/sch_qfq.c
+++ b/net/sched/sch_qfq.c
@@ -421,15 +421,16 @@ static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
} else
weight = 1;
- if (tb[TCA_QFQ_LMAX]) {
+ if (tb[TCA_QFQ_LMAX])
lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
- if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
- pr_notice("qfq: invalid max length %u\n", lmax);
- return -EINVAL;
- }
- } else
+ else
lmax = psched_mtu(qdisc_dev(sch));
+ if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
+ pr_notice("qfq: invalid max length %u\n", lmax);
+ return -EINVAL;
+ }
+
inv_w = ONE_FP / weight;
weight = ONE_FP / inv_w;
把 lmax 的校验移到了后面,确保从 mtu 取出的 lmax 也不能越界。
漏洞利用
通过漏洞我们可以让 agg->grp 指向 qfq_sched 对象后面的内存,然后利用 qfq_slot_insert 和 qfq_schedule_agg 可以实现越界写
static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
u64 roundedS)
{
// ...
hlist_add_head(&agg->next, &grp->slots[i]); // [1.1]
__set_bit(slot, &grp->full_slots); // [1.2]
}
static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
{
struct qfq_group *grp = agg->grp;
// ...
s = qfq_calc_state(q, grp);
__set_bit(grp->index, &q->bitmaps[s]); // [2]
// ...
}
越界写原语解释:
- qfq_slot_insert:由于 grp 指向越界的内存, set_bit 的时候能越界写 bit,hlist_add_head 时可以越界写一个指针。
- qfq_schedule_agg:由于 grp 指向越界的内存,通过堆风水可以控制 grp 对象内部的成员,从而控制 grp->index 在 set_bit 时实现对 q->bitmaps 的越界写。
由于 qfq_slot_insert 会写入指针且控制的 bit 有对齐的要求,所以作者采用了 qfq_schedule_agg 原语,这个原语比较简单,控制 grp->index 就可以实现越界写 bit.
struct qfq_sched {
struct tcf_proto __rcu *filter_list;
struct tcf_block *block;
struct Qdisc_class_hash clhash;
u64 oldV, V; /* Precise virtual times. */
struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
u32 wsum; /* weight sum */
u32 iwsum; /* inverse weight sum */
unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
u32 max_agg_classes; /* Max number of classes per aggr. */
struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
};
越界写 bit 的漏洞一般就是改 size 字段或者 指针域 构造 重叠对象,从而实现 UAF 或者类型混淆。
qfq_sched->nonfull_aggs 是一个很好的目标,原因是它 和 bitmaps 都在一个结构体内部,不需要额外的堆排布,该 list 在 qfq_find_agg 中被使用
static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
u32 lmax, u32 weight)
{
struct qfq_aggregate *agg;
hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
if (agg->lmax <span style="font-weight: bold;" class="mark"> lmax && agg->class_weight </span> weight)
return agg;
return NULL;
}
修改 nonfull_aggs 里面的指针,可以让 agg 指向其他区域,但是作者没有找到合适的布局对象控制 agg->lmax 和 agg->class_weight ,导致无法使用。
最终使用的策略是越界修改相邻 qdisc->filter_list ,让其指向其他的对象实现类型混淆:
PS: 控制 fake group 的 index,通过 qdisck #1
的 bitmaps 数组越界修改 qdisc #2
的 filter_list 指针。
dyn-kmalloc-8192 的堆喷对象为 qdisc_size_table .
// qdisc_get_stab() in net/sched/sch_api.c
struct qdisc_size_table *stab;
// ..
stab = kmalloc(struct_size(stab, data, tsize), GFP_KERNEL);
kmalloc-128 的堆喷对象为 xdp_umem
// in include/net/xdp_sock.h, size = 112 bytes
struct xdp_umem {
void *addrs;
u64 size;
u32 headroom;
u32 chunk_size;
u32 chunks;
u32 npgs;
struct user_struct *user;
refcount_t users;
u8 flags;
bool zc;
struct page **pgs;
int id;
struct list_head xsk_dma_list;
struct work_struct work;
};
xdp_umem 的 addrs 字段和 tcf_proto 对象的 next 指针重叠,addrs指向的区域是和用户态进程的共享内存,所以让 filter_list 指向 xdp_umem 后,用户态就能看控制 next 指针指向的 tcf_proto 结构体。
// in include/net/sch_generic.h
struct tcf_proto {
/* Fast access part */
struct tcf_proto __rcu *next;
void __rcu *root;
/* called under RCU BH lock*/
int (*classify)(struct sk_buff *,
const struct tcf_proto *,
struct tcf_result *);
__be16 protocol;
/* All the rest */
u32 prio;
void *data;
const struct tcf_proto_ops *ops;
struct tcf_chain *chain;
/* Lock protects tcf_proto shared state and can be used by unlocked
* classifiers to protect their private data.
*/
spinlock_t lock;
bool deleting;
refcount_t refcnt;
struct rcu_head rcu;
struct hlist_node destroy_ht_node;
};
在 __tcf_classify 里面会遍历 tcf_proto->next ,因此可以控制 next 指针指向的 tp ,通过 classify 函数指针实现控制流劫持做 ROP.
// in net/sched/sch_qfq.c
static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct qfq_sched *q = qdisc_priv(sch);
struct tcf_proto *fl;
// ..
fl = rcu_dereference_bh(q->filter_list);
result = tcf_classify(skb, NULL, fl, &res, false);
// ..
}
// in net/sched/cls_api.c
static inline int __tcf_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
const struct tcf_proto *orig_tp,
struct tcf_result *res,
bool compat_mode,
u32 *last_executed_chain)
{
// ..
for (; tp; tp = rcu_dereference_bh(tp->next)) {
__be16 protocol = skb_protocol(skb, false);
int err;
if (tp->protocol != protocol &&
tp->protocol != htons(ETH_P_ALL))
continue;
err = tp->classify(skb, tp, res);
// ..
}
漏洞利用的地址泄露是使用侧信道的方式实现的
https://github.com/IAIK/prefetch/blob/master/cacheutils.h
总结与思考
漏洞产生的原因可能是开发者不了解设备 mtu 可以被用户态设置的非常大从而越界,做变体分析或者审计其他网络子系统代码时可以借鉴该漏洞的思路,设备的一些属性可能是被用户态控制的。
漏洞利用方面是通过堆布局控制了越界访问的对象,然后控制其中的 index 成员实现越界写,这一步控制数据的思路和 CVE-2020-12352 是类似的。
越界修改 bit 劫持指针也是相对比较常见的思路,不过之前都是利用重叠对象实现 msg_msg 的 UAF,本文的利用思路则是利用类型混淆,控制 next 指针指向的对象,这提示我们可以多搜索、多尝试新的对象,打开思路。
利用侧信道的方式进行信息泄露,最近几年确实也有一些实际的案例,这个思路在真实场景下可能是一个不错的信息泄露策略。
参考地址