1519. Number of Nodes in the Sub-Tree With the Same Label

问题:

给定一棵以0为root的树,

给定

  • 该树的节点连接关系。
  • 每个节点上标记的字母。

求以各个节点为root的子树中,拥有和该节点标记字母相同节点的个数。

Example 1:
Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], labels = "abaedcd"
Output: [2,1,1,1,1,1,1]
Explanation: Node 0 has label 'a' and its sub-tree has node 2 with label 'a' as well, thus the answer is 2. Notice that any node is part of its sub-tree.
Node 1 has a label 'b'. The sub-tree of node 1 contains nodes 1,4 and 5, as nodes 4 and 5 have different labels than node 1, the answer is just 1 (the node itself).

Example 2:
Input: n = 4, edges = [[0,1],[1,2],[0,3]], labels = "bbbb"
Output: [4,2,1,1]
Explanation: The sub-tree of node 2 contains only node 2, so the answer is 1.
The sub-tree of node 3 contains only node 3, so the answer is 1.
The sub-tree of node 1 contains nodes 1 and 2, both have label 'b', thus the answer is 2.
The sub-tree of node 0 contains nodes 0, 1, 2 and 3, all with label 'b', thus the answer is 4.

Example 3:
Input: n = 5, edges = [[0,1],[0,2],[1,3],[0,4]], labels = "aabab"
Output: [3,2,1,1,1]

Example 4:
Input: n = 6, edges = [[0,1],[0,2],[1,3],[3,4],[4,5]], labels = "cbabaa"
Output: [1,2,1,1,2,1]

Example 5:
Input: n = 7, edges = [[0,1],[1,2],[2,3],[3,4],[4,5],[5,6]], labels = "aaabaaa"
Output: [6,5,4,1,3,2,1]
 

Constraints:
1 <= n <= 10^5
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
labels.length == n
labels is consisting of only of lower-case English letters.

example 1:

example 2:

example 3:

解法:DFS

  • 状态:
    • 当前节点id
    • 当前节点为root的子树中,各个字母的出现次数统计。
  • 选择:
    • 当前节点的子节点
      • (使用res[i]标记当前节点是否为父节点。每次处理中,对于当前节点结束后,才更新当前节点的res。
      • 因此,若当前节点的res已经!=0初始值,那么证明该节点为父节点。)
  • 处理:
    • 更新当前节点的res为1。(自己字母累计)
    • 对所有子节点统计,各个子树cnt1的所有字母总和。
    • 对当前节点的字母总和cnt即为:同一个字母的各个子树上的计数和。
    • 当前节点的res则为:res = cnt[当前节点字母]+1(自己)

 

代码参考:

 1 class Solution {
 2 public:
 3     unordered_map<int, vector<int>> graph;
 4     int N;
 5     void dfs(vector<int>& res, int cnt[], int root, string& labels) {
 6         if(res[root]!=0) return;//except for parent who will already count res
 7         res[root] = 1;
 8         for(auto child:graph[root]) {
 9             int cnt1[26] = {0};
10             //cnt: In current root node's subtree, the count of each alphbet.
11             //cnt1: In child node's subtree, the count of each alphbet.
12             dfs(res, cnt1, child, labels);
13             for(int k=0; k<26; k++)
14                 cnt[k]+=cnt1[k];
15         }
16         cnt[labels[root]-'a']+=1;
17         res[root] = cnt[labels[root]-'a'];
18         return;
19     }
20     vector<int> countSubTrees(int n, vector<vector<int>>& edges, string labels) {
21         vector<int> res(n,0);
22         int cnt[26] = {0};
23         N = n;
24         for(auto ed:edges) {
25             graph[ed[0]].push_back(ed[1]);
26             graph[ed[1]].push_back(ed[0]);
27         }
28         dfs(res, cnt, 0, labels);
29         return res;
30     }
31 };

 

posted @ 2021-03-21 11:47  habibah_chang  阅读(83)  评论(0编辑  收藏  举报