1617. Count Subtrees With Max Distance Between Cities
问题:
给定n个节点,以及节点直接的连线数组edges
已知,这些节点代表城市,这些城市构成一棵树,
即任意两节点都有唯一路径。
求,这些城市中的子树中,各个最大路径的子树个数。
Example 1: Input: n = 4, edges = [[1,2],[2,3],[2,4]] Output: [3,4,0] Explanation: The subtrees with subsets {1,2}, {2,3} and {2,4} have a max distance of 1. The subtrees with subsets {1,2,3}, {1,2,4}, {2,3,4} and {1,2,3,4} have a max distance of 2. No subtree has two nodes where the max distance between them is 3. Example 2: Input: n = 2, edges = [[1,2]] Output: [1] Example 3: Input: n = 3, edges = [[1,2],[2,3]] Output: [2,1] Constraints: 2 <= n <= 15 edges.length == n-1 edges[i].length == 2 1 <= ui, vi <= n All pairs (ui, vi) are distinct.
Example 1:
⚠️ 注意:Example 1中所有的子树(至少有两个城市)有:
[1,2] [2,3] [2,4]
[1,2,3] [1,2,4]
[1,2,3,4]
而:
[1,3] [1,4] [1,3,4]没有全联通,因此不算子树。
解法:bitmask->Combination 组合。
例如:state:1101
代表组合:[1,2,4]
代码做法:
//遍历n个元素的组合: for(int state=0; state<(1<<n); state++) { //bitmask to get combination ... } //翻译对应组合: for(int i=0; i<n; i++) {//对应元素 i: 0,1,2...n-1 //this node i doesn't exist. if(((state>>i)&1) == 0) continue; //this node i exists. if(((state>>i)&1) == 1) { ... } }
本题解法:
根据给出的【节点直接的连线数组edges】
1. 创建任意两节点的距离数组distance:
<1> 直接相连距离: 距离=1
distance[i][j] == distance[j][i]
由于节点无向,因此交换也保存。
<2> 间接相连距离构建:距离=
distance[i][j] = distance[i][k] + distance[k][j]
2. 遍历所有组合:
找到合法子树(node数==edge数+1)
求最大距离。
代码参考:
1 class Solution { 2 public: 3 vector<vector<int>> distance; 4 int getmaxdis(int state, int n) {//this state comb:0~n 5 //state: 01101 6 //city: 01234->{1,2,4} 7 int maxdis = 0; 8 int city_n = 0, edge_n = 0; 9 for(int i=0; i<n; i++) { 10 if(((state>>i)&1) == 0) continue;//this city i doesn't exist. 11 city_n++; 12 for(int j=i+1; j<n; j++) { 13 if(((state>>j)&1) == 0) continue;//this city j doesn't exist. 14 if(distance[i][j]==1)edge_n++;// 2 cities -> 1 edge 15 maxdis = max(maxdis, distance[i][j]); 16 } 17 } 18 if(city_n!=edge_n+1) return 0;// invalid set which can't be a tree (like ex1: {1,3,4}) 19 return maxdis; 20 } 21 vector<int> countSubgraphsForEachDiameter(int n, vector<vector<int>>& edges) { 22 vector<int>res(n-1, 0); 23 int INF = n;//the max value of the set: n 24 distance.resize(n, vector<int>(n, INF)); 25 for(vector<int>& edge:edges) { 26 distance[edge[0]-1][edge[1]-1] = 1; 27 distance[edge[1]-1][edge[0]-1] = 1; 28 } 29 //get all distance 30 for(int k=0; k<n; k++) {//过渡节点 31 for(int i=0; i<n; i++) { 32 for(int j=0; j<n; j++) { 33 distance[i][j] = min(distance[i][j], distance[i][k]+distance[k][j]); 34 } 35 } 36 } 37 38 //for each set, get res 39 for(int state=0; state<(1<<n); state++) {//bitmask to get combination 40 int d = getmaxdis(state, n); 41 if(d>0) res[d-1]++; 42 } 43 44 return res; 45 } 46 };