357. Count Numbers with Unique Digits

问题:

给定数字n,由n个数字(0~9)构成0~n位数,求构成的数中,不同数位上重复数字的数以外,有多少个数。

Example:
Input: 2
Output: 91 
Explanation: The answer should be the total numbers in the range of 0 ≤ x < 100, 
             excluding 11,22,33,44,55,66,77,88,99

Constraints:
0 <= n <= 8

 

解法:Backtracking(回溯算法)

对于本问题,两个变量:

  • 路径:已经选择好的前几位结果path
  • 选择列表:对该位置上元素的选择可能性:0~9中不在path中的任意数字

处理过程:

  • base:递归退出条件:选择到最后一位结束,这里为已经选择好路径长度==给出的组合要求长度 n。
  • 做选择:对于当前位置,选择其中一个可用数字a。(不在path中的任意数字)
    • 路径.add(a)
    • 选择列表.delete(a):上一个选择数字 i + 1
  • 撤销选择:回退到选择数字a之前的状况。
    • 路径.delete(a)
    • 选择列表.add(a):i

⚠️  注意:特别的以0开头的数字,不要求开头的0与其他位的0进行重复。

代码参考:

 1 class Solution {
 2 public:
 3     void dfs(int& res, int n, int pos, unordered_set<int>& path) {
 4         if(pos == n) {
 5             res++;
 6             return;
 7         }
 8         for(int i=0; i<10; i++) {
 9             if(path.count(i)==0) {
10                 path.insert(i);
11                 if(path.size()==1 && i==0) path.erase(i);
12                 dfs(res, n, pos+1, path);
13                 path.erase(i);
14             }
15         }
16         return;
17     }
18     int countNumbersWithUniqueDigits(int n) {
19         int res = 0;
20         unordered_set<int> path;
21         dfs(res, n, 0, path);
22         return res;
23     }
24 };

 

数学算法:

参考leetcode discuss

Following the hint. Let f(n) = count of number with unique digits of length n.

f(1) = 10. (0, 1, 2, 3, ...., 9)

f(2) = 9 * 9. Because for each number i from 1, ..., 9, we can pick j to form a 2-digit number ij and there are 9 numbers that are different from i for j to choose from.

f(3) = f(2) * 8 = 9 * 9 * 8. Because for each number with unique digits of length 2, say ij, we can pick k to form a 3 digit number ijk and there are 8 numbers that are different from i and j for k to choose from.

Similarly f(4) = f(3) * 7 = 9 * 9 * 8 * 7....

...

f(10) = 9 * 9 * 8 * 7 * 6 * ... * 1

f(11) = 0 = f(12) = f(13)....

any number with length > 10 couldn't be unique digits number.

The problem is asking for numbers from 0 to 10^n. Hence return f(1) + f(2) + .. + f(n)

 

代码参考:

 1 class Solution {
 2 public:
 3     int countNumbersWithUniqueDigits(int n) {
 4         int res = 10;
 5         if(n==0) return 1;
 6         int kcounts = 9;//k位数,能构成的符合条件的数字总数 
 7         int avalible = 9;//该位置余下可用的数字个数
 8         for(int i=n; i>1; i--) {
 9             kcounts = kcounts * avalible;
10             res += kcounts;
11             avalible--;
12         }
13         return res;
14     }
15 };

 

posted @ 2021-01-16 12:32  habibah_chang  阅读(84)  评论(0编辑  收藏  举报