222. Count Complete Tree Nodes
问题:
计算给定完全二叉树的节点个数。
Example: Input: 1 / \ 2 3 / \ / 4 5 6 Output: 6
解法:Complete Binary Tree(完全二叉树)
首先明确以下定义:
- (了解即可)Full Binary Tree
- 国际定义的 满二叉树
- 定义:A binary tree in which each node has exactly zero or two children.In other words, every node is either a leaf or has two children. For efficiency, any Huffman coding is a full binary tree.
-
因此这样的二叉树,也叫做 Full Binary Tree
- Complete Binary Tree
- 完全二叉树
- 定义:A binary tree in which every level, except possibly the deepest, is completely filled. At depth n, the height of the tree, all nodes must be as far left as possible.
- Perfect Binary Tree
- 满二叉树
- 定义:A binary tree with all leaf nodes at the same depth. All internal nodes have degree 2.
本题中,
- 函数定义 int countNodes(TreeNode* root)
- 对每一个root节点,求出本身+递归(所有子节点的个数)和。
- 一般的,= count(1+countNodes(children))
- ♻️ 优化:若该完全二叉树,特别的,是满二叉树(Perfect Binary Tree):
- 可求出树高height,总节点个数=2^(height)-1
- 状态 root
- 选择 (分别得到左右节点的结果left,right后)
- return 1+left+right
- base case
- if(!root) return 0;
时间复杂度:
一般递归次数:树的高度 O(logN)
每次递归时间:(♻️ 优化 求树高花时间=树高)O(logN)
因此,总共花时间:O(logN*logN)
代码参考:
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode() : val(0), left(nullptr), right(nullptr) {} 8 * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} 9 * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} 10 * }; 11 */ 12 class Solution { 13 public: 14 //recursion 15 //Def: return the count of node 16 // -> full binary tree -> 2^hight-1 17 // -> complete binary tree -> tofind left, right tree, recursionly. 18 //Status: root 19 //Opt: (after get left,right result) 20 // return left+right+1. 21 //base: 22 // root==null: return 0. 23 int countNodes(TreeNode* root) { 24 if(!root) return 0; 25 int lh = 1, rh = 1; 26 TreeNode* l = root->left; 27 while(l) { 28 lh++; 29 l = l->left; 30 } 31 TreeNode* r = root->right; 32 while(r) { 33 rh++; 34 r = r->right; 35 } 36 //full binary tree 37 if(lh==rh) { 38 return pow(2,lh)-1;//2^hight-1 39 } 40 //complete binary tree -> recursion 41 lh = countNodes(root->left); 42 rh = countNodes(root->right); 43 return lh+rh+1; 44 } 45 };