CVPR2013-papers
1,PISA: Pixelwise Image Saliency by Aggregating Complementary Appearance Contrast Measures with Spatial Priors
Keyang Shi, Keze Wang, Jiangbo Lu, Liang Lin
http://ss.sysu.edu.cn/~ll/publications.html
2,Looking Beyond the Image: Unsupervised Learning for Object Saliency and Detection
Parthipan Siva, Chris Russell, Tao Xiang, Lourdes Agapito
http://www.eecs.qmul.ac.uk/~lourdes/
3, Hierarchical Saliency Detection
Qiong Yan, Li Xu, Jianping Shi, Jiaya Jia
4,Saliency Detection via Graph-Based Manifold Ranking
Chuan Yang, Lihe Zhang, Huchuan Lu, Ming-Hsuan Yang, Xiang Ruan
http://faculty.ucmerced.edu/mhyang/pubs.html
5, Saliency Aggregation: A Data-driven Approach
Long Mai, Yuzhen Niu, Feng Liu
http://web.cecs.pdx.edu/~fliu/publication.htm
6,What Makes a Patch Distinct?[PDF]
Ran Margolin, Ayellet Tal, Lihi Zelnik-Manor
[code] http://cgm.technion.ac.il/Computer-Graphics-Multimedia/Software/DstnctSal/
Low-level processing:
Finding Things: Image Parsing with Regions and Per-Exemplar Detectors
Joseph Tighe, Svetlana Lazebnik
Bringing Semantics Into Focus Using Visual Abstraction
Larry Zitnick, Devi Parikh
PatchMatch Filter: Efficient Edge-Aware Filtering Meets Randomized Search for Fast Correspondence Field Estimation
Jiangbo Lu, Hongsheng Yang, Dongbo Min, Minh Do
Boosting Binary Keypoint Descriptors
Tomasz Trzcinski, Mario Christoudias, Pascal Fua, Vincent Lepetit