pytorch detach()截断反向传播、numpy()函数 item函数

1.detach():返回一个新的Variable,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个Variable永远不需要计算其梯度,不具有grad。

即使之后重新将它的requires_grad置为true,它也不会具有梯度grad。这样我们就会继续使用这个新的Variable进行计算,后面当我们进行反向传播时,到该调用detach()的Variable就会停止,不能再继续向前进行传播

 

2.numpy()将tensor转换为numpy:
注意cuda上面的变量类型只能是tensor,不能是其他

 

3.loss.item(). item()返回的是tensor中的值,且只能返回单个值(标量),不能返回向量,使用返回loss等。

 

posted @   Tomorrow1126  阅读(583)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· 单线程的Redis速度为什么快?
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
点击右上角即可分享
微信分享提示