论文阅读笔记StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
combine CLIP with StyleGAN
一.introduction and related work
1、CLIP主要完成的任务是:给定一幅图像,在32768个随机抽取的文本片段中,找到能匹配的那个文本。为了完成这个任务,CLIP这个模型需要学习识别图像中各种视觉概念,并将视觉概念将图片关联,也因此,CLIP可以用于几乎任意视觉人类任务。例如,一个数据集的任务为区分猫和狗,则CLIP模型预测图像更匹配文字描述“一张狗的照片”还是“一张猫的照片”。
2、text prompt 文本提示
3、related work about image manipulation base on text-guided
Some methods [10, 31, 27] use a GAN-based encoder-decoder architecture, to disentangle the semantics of both input images and text descriptions. ManiGAN [22] introduces a novel text-image combination module, which produces high-quality images.
A concurrent work to ours, TediGAN [51], also uses StyleGAN for text-guided image generation and manipulation.
[10] H. Dong, Simiao Yu, Chao Wu, and Y. Guo. Semantic imagesynthesis via adversarial learning.Proc. ICCV, pages 5707–5715, 2017
[27]Yahui Liu, Marco De Nadai, Deng Cai, Huayang Li, XavierAlameda-Pineda, N. Sebe, and Bruno Lepri.Describewhat to change: A text-guided unsupervised image-to-imagetranslation approach.Proceedings of the 28th ACM Interna-tional Conference on Multimedia, 2020
[31]Seonghyeon Nam, Yunji Kim, and S. Kim. Text-adaptivegenerative adversarial networks: Manipulating images withnatural language. InNeurIPS, 2018
4、While most works perform image manipulations in the W or W+ spaces, Wuet al. [50] proposed to use the StyleSpace S, and showed that it is better disentangled than W and W+
Our latent optimizer and mapper work in the W+ space, while the input-agnostic directions that we detect are in S.
二.contributions
In this work we explore three ways for text-driven image manipulation:
1.We first introduce an optimization scheme that utilizes a CLIP-based loss to modify an input latent vector in response to a user-provided text prompt.
2.we describe a latent mapper that infers a text-guided latent manipulation step fora given input image, allowing faster and more stable text-based manipulation.
3.Finally, we present a method for mapping a text prompts to input-agnostic directions in Style-GAN’s style space, enabling interactive text-driven image manipulation.
中文:
Latent Optimization: 将CLIP作为loss网络,这是最通用的方法,但是修改一张图片需要好几分钟。
Latent Mapper:固定文本提示,以待修改的图片作为起点,Mapper推理根据文本提示该如何修改图片,然后对图片进行修改。
Global Direction:与方法2类似,将文本提示映射到StyleGAN的‘style’空间,从而修改图像。
三.method
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· 单线程的Redis速度为什么快?
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
2020-11-09 java编译时多态、运行时多态
2020-11-09 java对象上转型总结