评价gan好坏的指标:IS和FID
一、IS(inception score)
机器之心链接:https://www.jiqizhixin.com/articles/2019-01-10-18
很多关于 GAN 生成图片的论文中,作者评价其模型表现的一项重要指标是 Inception Score(下文简称 IS)。其名字中 Inception 来源于 Google 的 Inception Net,因为计算这个 score 需要用到 Inception Net-V3(第三个版本的 Inception Net)。
Inception Net 是图片分类网络,在 ImageNet 数据库上训练,ImageNet 数据库共有 1.2M 个 RGB 图片,分为 1000 类。Inception Score 只是把 Inception Net-V3 作为一个工具,理解 Inception Score 不需要知道 Inception Net-V3 的细节,各种深度学习框架中都已经包含了预训练好的 Inception Net-V3 了,直接拿来用就好了。
评价一个生成模型,我们需要考验它两方面性能:1. 生成的图片是否清晰;2. 生成的图片是否多样。生成的图片不够清晰,显然说明生成模型表现欠佳;生成的图片够清晰了,我们还要看是不是能生成足够多样的图片,有些生成模型只能生成有限的几种清晰图片,陷入了所谓 mode collapse,也不是好的模型。
二、FID
1、Frechet Inception 距离得分(Frechet Inception Distance score,FID)是计算真实图像和生成图像的特征向量之间距离的一种度量。
2、FID 从原始图像的计算机视觉特征的统计方面的相似度来衡量两组图像的相似度,这种视觉特征是使用 Inception v3 图像分类模型计算的得到的。
分数越低代表两组图像越相似,或者说二者的统计量越相似,FID 在最佳情况下的得分为 0.0,表示两组图像相同。
FID 分数被用于评估由生成性对抗网络生成的图像的质量,较低的分数与较高质量的图像有很高的相关性。
3、为了评估 GAN 在图像生成任务中的性能,我们引入了「Frechet Inception Distance」(FID),它能比 Inception 分数更好地计算生成图像与真实图像的相似性。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· 单线程的Redis速度为什么快?
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码