为什么Gram matrix可以代表一个图片的style?(格莱姆矩阵)

在[2]中,我们从style transfer中使用的Gram matrix出发,试图解释为什么Gram matrix可以代表一个图片的style这个问题。这是我看完style transfer的paper后感觉最为迷惑的一点。一个偶然的机会,我们发现这个匹配两张图的Gram matrix,其实数学上严格等价于极小化这两张图deep activation的2nd poly kernel的MMD距离。其中,MMD距离是用来通过从两个分布中sample的样本来衡量两个分布之间的差异的一种度量。所以本质上,style transfer这个paper做的事情就是将生成图片的deep activation分布和style image的分布进行匹配。这其实可以认为是一个domain adaptation的问题。所以很自然我们可以使用类似于adaBN的想法去做这件事情。这后续有一系列的工作拓展了这个想法,包括adaIN[3]以及若干基于GAN去做style transfer的工作。
 
https://www.cnblogs.com/yifanrensheng/p/12862174.html

1.Gram矩阵是两两向量的内积组成,所以Gram矩阵可以反映出该组向量中各个向量之间的某种关系

2.

 

 

 

posted @   Tomorrow1126  阅读(320)  评论(0编辑  收藏  举报
编辑推荐:
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· 单线程的Redis速度为什么快?
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
历史上的今天:
2021-03-14 蓝桥杯 买不到的数目(动态规划)
点击右上角即可分享
微信分享提示