封装
封装:
面向对象编程有三大特性:封装、继承、多态,其中最重要的一个特性就是封装。封装指的就是把数据与功能都整合到一起,
听起来是不是很熟悉,没错,我们之前所说的”整合“二字其实就是封装的通俗说法。除此之外,针对封装到对象或者类中的属性,
我们还可以严格控制对它们的访问,分两步实现:隐藏与开放接口。
隐藏属性
Python的Class机制采用双下划线开头的方式将属性隐藏起来(设置成私有的),但其实这仅仅只是一种变形操作,
类中所有双下滑线开头的属性都会在类定义阶段、检测语法时自动变成“_类名__属性名”的形式:
class Foo: __N=0 # 变形为_Foo__N def __init__(self): # 定义函数时,会检测函数语法,所以__开头的属性也会变形 self.__x=10 # 变形为self._Foo__x def __f1(self): # 变形为_Foo__f1 print('__f1 run') def f2(self): # 定义函数时,会检测函数语法,所以__开头的属性也会变形 self.__f1() #变形为self._Foo__f1() print(Foo.__N) # 报错AttributeError:类Foo没有属性__N obj =
Foo() print(obbj.__x
)
# 报错AttributeError:对象obj没有属性__x
这种变形需要注意的问题是:
1、在类外部无法直接访问双下滑线开头的属性,但知道了类名和属性名就可以拼出名字:_类名__属性,
然后就可以访问了,如Foo._A__N,所以说这种操作并没有严格意义上地限制外部访问,仅仅只是一种语法意义上的变形。
>>> Foo.__dict__
mappingproxy({..., '_Foo__N': 0, ...})
>>> obj.__dict__
{'_Foo__x': 10}
>>> Foo._Foo__N
0
>>> obj._Foo__x
10
>>> obj._Foo__N
0
2、在类内部是可以直接访问双下滑线开头的属性的,比如self.__f1(),因为在类定义阶段类内部双下滑线开头的属性统一发生了变形。
>>> obj.f2()
__f1 run
3、变形操作只在类定义阶段发生一次,在类定义之后的赋值操作,不会变形。
>>> Foo.__M=100
>>> Foo.__dict__
mappingproxy({..., '__M': 100,...})
>>> Foo.__M
100
>>> obj.__y=20
>>> obj.__dict__
{'__y': 20, '_Foo__x': 10}
>>> obj.__y
20
开放接口
定义属性就是为了使用,所以隐藏并不是目的
隐藏数据属性:
将数据隐藏起来就限制了类外部对数据的直接操作,然后类内应该提供相应的接口来允许类外部间接地操作数据,
接口之上可以附加额外的逻辑来对数据的操作进行严格地控制
隐藏函数属性:
目的的是为了隔离复杂度,例如ATM程序的取款功能,该功能有很多其他功能组成,比如插卡、身份认证、输入金额、
打印小票、取钱等,而对使用者来说,只需要开发取款这个功能接口即可,其余功能我们都可以隐藏起来
>>> class ATM:
... def __card(self): #插卡
... print('插卡')
... def __auth(self): #身份认证
... print('用户认证')
... def __input(self): #输入金额
... print('输入取款金额')
... def __print_bill(self): #打印小票
... print('打印账单')
... def __take_money(self): #取钱
... print('取款')
... def withdraw(self): #取款功能
... self.__card()
... self.__auth()
... self.__input()
... self.__print_bill()
... self.__take_money()
...
>>> obj=ATM()
>>> obj.withdraw()
总结:
总结隐藏属性与开放接口,本质就是为了明确地区分内外,类内部可以修改封装内的东西而不影响外部调用者的代码;
而类外部只需拿到一个接口,只要接口名、参数不变,则无论设计者如何改变内部实现代码,使用者均无需改变代码。
这就提供一个良好的合作基础,只要接口这个基础约定不变,则代码的修改不足为虑。