生成器:yield(自定义迭代器)
如何得到自定义的迭代器:
在函数内一旦存在yield关键字,调用函数并不会执行函数体代码
会返回一个生成器对象,生成器即自定义的迭代器
自定义迭代器.__next__()
会触发函数体代码的运行,然后遇到yield停下来,将yield后的值
当做本次调用的结果返回
有了yield关键字,我们就有了一种自定义迭代器的实现方式。yield可以用于返回值,但不同于return,
函数一旦遇到return就结束了,而yield可以保存函数的运行状态挂起函数(暂定函数),用来返回多次值
案例:
# 如何得到自定义的迭代器:
# 在函数内一旦存在yield关键字,调用函数并不会执行函数体代码
# 会返回一个生成器对象,生成器即自定义的迭代器
def func():
print('第一次')
yield 1
print('第二次')
yield 2
print('第三次')
yield 3
print('第四次')
# g=func()
# print(g)
# 生成器就是迭代器
# g.__iter__()
# g.__next__()
# 会触发函数体代码的运行,然后遇到yield停下来,将yield后的值
# 当做本次调用的结果返回
# res1=g.__next__()
# print(res1)
#
#
# res2=g.__next__()
# print(res2)
#
# res3=g.__next__()
# print(res3)
#
# res4=g.__next__()
# len('aaa') # 'aaa'.__len__()
# next(g) # g.__next__()
# iter(可迭代对象) # 可迭代对象.__iter__()
# 应用案列
# def my_range(start,stop,step=1):
# # print('start...')
# while start < stop:
# yield start
# start+=step
# print('end....')
# g=my_range(1,5,2) # 1 3
# print(next(g))
# print(next(g))
# print(next(g))
#
# for n in my_range(1,7,2):
# print(n)
# 总结yield:
# 有了yield关键字,我们就有了一种自定义迭代器的实现方式。yield可以用于返回值,但不同于return,函数一旦遇到return就结束了,而yield可以保存函数的运行状态挂起函数,用来返回多次值
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用