【学习笔记/题解】分层图/[JLOI2011]飞行路线

题目戳我

\(\text{Solution:}\)

关于分层图:

一般用于处理:给你\(k\)次机会对边权进行修改的最短路问题。

算法流程:

  • 建立出\(k\)层图,对应进行\(k\)次操作后的局面。

  • 不同图之间建立边,即表示从当前局面进行一次操作转移到下一个局面。

由分层对图的边和点较多,所以开空间的时候一定要精确计算,避免空间爆炸和运行时错误。

对于本题:

这题的操作就是把一条边的边权改为\(0\).于是,类似地,我们建立\(k\)层图,并对每一条边向下一层连边,构造出分层图跑即可。

关于边数:\(E=(4k+2)*m\)约为\(2.1*10^6.\)于是我们直接把边开到\(2.5*10^6\)即可。

对于点的空间不必要开这么大,只是笔者没有改而已……

#include<bits/stdc++.h>
using namespace std;
const int MAXN=2.5e6+10;
int head[MAXN],tot,n,m,dis[MAXN];
struct E{int nxt,to,dis;}e[MAXN];
int vis[MAXN],k,S,T,ans;
inline void add(int x,int y,int w){e[++tot]=(E){head[x],y,w};head[x]=tot;}
struct Q{
	int dis,pos;
	bool operator<(const Q&x)const{
		return x.dis<dis;
	}
};
priority_queue<Q>q;
void dijkstra(int s){
	memset(dis,0x3f3f3f3f,sizeof dis);
	dis[s]=0;q.push((Q){dis[s],s});
	while(!q.empty()){
		Q tmp=q.top();q.pop();
		int x=tmp.pos;
		if(vis[x])continue;
		vis[x]=1;
		for(int i=head[x];i;i=e[i].nxt){
			int j=e[i].to;
			if(dis[j]>dis[x]+e[i].dis){
				dis[j]=dis[x]+e[i].dis;
				if(!vis[j])q.push((Q){dis[j],j});
			}
		}
	}
}
int main(){
	scanf("%d%d%d",&n,&m,&k);
	scanf("%d%d",&S,&T);
	for(int i=1;i<=m;++i){
		int u,v,c;
		scanf("%d%d%d",&u,&v,&c);
		add(u,v,c);add(v,u,c);
		for(int j=1;j<=k;++j){
			add(u+(j-1)*n,v+j*n,0);
			add(v+(j-1)*n,u+j*n,0);
			add(u+j*n,v+j*n,c);
			add(v+j*n,u+j*n,c);
		}
	}
	dijkstra(S);ans=(1<<30);
	for(int i=0;i<=k;++i)ans=min(ans,dis[T+i*n]);
	printf("%d\n",ans);
	return 0;
}
posted @ 2020-10-06 10:46  Refined_heart  阅读(148)  评论(0编辑  收藏  举报