【学习笔记/题解】树上启发式合并/CF600E Lomsat gelral

题目戳我

\(\text{Solution:}\)

树上启发式合并,是对普通暴力的一种优化。

考虑本题,最暴力的做法显然是暴力统计每一次的子树,为了避免其他子树影响,每次统计完子树都需要清空其信息。

但是,如果我们先对非\(x\)的节点进行统计,最后统计\(x\)然后合并其他节点的信息,那么,\(x\)的统计信息就没有必要被删掉。

那么显然地,\(x\)的子树越大越好。

于是,自然想到轻重链剖分,并将\(x\)设置为其重儿子。于是,算法模型如下:

  • 对所有非重儿子进行统计并清空其所记录的统计信息。

  • 对重儿子进行统计并保留其信息。

  • 暴力将其他儿子的信息合并到重儿子上,得到当前子树的信息。

根据树链剖分的性质,一个点到根的路径上的轻边条数不超过\(\log n\)条,而一个节点只有其祖先遇到轻边的时候才会被统计一次。

所以复杂度为\(O(n\log n).\)

关于这题 直接安装上述算法流程进行暴力统计即可。

关于一点对树剖性质的证明:每次经过一条轻边,其子树大小最少会变成原来的一半,所以轻边条数是\(O(\log n)\)的。

#include<bits/stdc++.h>
using namespace std;
const int MAXN=3e5+10;
typedef long long ll;
int son[MAXN],head[MAXN],n,tot,siz[MAXN];
int vis[MAXN],cnt[MAXN],col[MAXN],Mx,Son;
vector<int>v[MAXN];
ll sum,ans[MAXN];
void dfs(int x,int fa){
	siz[x]=1;
	for(int i=0;i<v[x].size();++i){
		int j=v[x][i];
		if(j==fa)continue;
		dfs(j,x);siz[x]+=siz[j];
		if(siz[j]>siz[son[x]])son[x]=j;
	}
}
void add(int x,int fa,int val){
	cnt[col[x]]+=val;
	if(cnt[col[x]]>Mx)Mx=cnt[col[x]],sum=col[x];
	else if(cnt[col[x]]==Mx)sum+=col[x]*1ll;
	for(int i=0;i<v[x].size();++i){
		int j=v[x][i];
		if(j==fa||j==Son)continue;
		add(j,x,val);
	}
}
void dfs2(int x,int fa,int opt){
	for(int i=0;i<v[x].size();++i){
		int j=v[x][i];
		if(j==fa)continue;
		if(j!=son[x])dfs2(j,x,0);
	}
	if(son[x])dfs2(son[x],x,1),Son=son[x];
	add(x,fa,1);Son=0;
	ans[x]=sum;
	if(!opt)add(x,fa,-1),sum=Mx=0;
}
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;++i)scanf("%d",col+i);
	for(int i=1;i<n;++i){
		int x,y;
		scanf("%d%d",&x,&y);
		v[x].push_back(y);v[y].push_back(x);
	}
	dfs(1,0);dfs2(1,0,0);
	for(int i=1;i<=n;++i)printf("%I64d ",ans[i]);
	puts("");
	return 0;
}
posted @ 2020-10-05 17:01  Refined_heart  阅读(152)  评论(0编辑  收藏  举报