【题解】小M的作物
\(\text{Solution:}\)
这题要求最大收获,可以转化为所有可能的收益减去最小割。
单个点很好连边 \((S\to pos\to T),\) 问题在于如何处理组合的点。
观察到,一个组合要不然全部都划分到某一个集合,要不然不做贡献。注意到组合里面的点是不能拆开的。
所以我们建立一个组合虚点,它连接所有组合内的点,边权是 \(\infty.\) 这样就一定可以避免把它们划分到不同集合中。
那么,我们可以考虑如下建模模型:
\(\text{S}\to \text{compose} \to \text{everypoints in this group} \to \text{compose endpoint} \to \text{T}.\)
本题我们可以把 \(A\) 看作 \(S,T\) 同理。
于是这个题再套上我们最熟悉的\(\text{Dinic}\)模板就过了。
最后来分析一下这个图的规模:
首先,所有点都应该有一个对应点,再加上每一个集合的开始点和结束点,共\(n+m+m\)个。最大是\(3000.\)
对于边:每个点对源点和汇点都会连边,这里是\(n+n.\)每一个组合,其边数是组合中的点数的两倍,共约为\(n+n+2mk.\)最大数据是\(2*10^6+2000.\)
根据\(Dinic\)的复杂度\(O(n^2 m)\)这个数量级显然会炸,但是出题人毕竟一定会让\(Dinic\)过,以及\(Dinic\)复杂度跑不满的原因,这个算法是可以过的。
#include<bits/stdc++.h>
using namespace std;
const int inf=(1<<30);
const int MAXN=2e6+10;
int tot=1,head[MAXN];
int dep[MAXN],cur[MAXN];
int n,a[MAXN],b[MAXN],m;
int Ans,c1[MAXN],c2[MAXN],S,T;
vector<int>v[MAXN];
struct E{int nxt,to,flow;}e[MAXN];
inline void add(int x,int y,int w){
e[++tot].to=y;e[tot].nxt=head[x];
e[tot].flow=w;head[x]=tot;
e[++tot].to=x;e[tot].nxt=head[y];
e[tot].flow=0;head[y]=tot;
}
bool bfs(int s,int t){
memset(dep,0,sizeof dep);
cur[s]=head[s];dep[s]=1;
queue<int>q;q.push(s);
while(!q.empty()){
s=q.front();
q.pop();
for(int i=head[s];i;i=e[i].nxt){
int j=e[i].to;
if(!dep[j]&&e[i].flow){
cur[j]=head[j];
dep[j]=dep[s]+1;
if(j==t)return true;
q.push(j);
}
}
}
return false;
}
int dfs(int s,int flow,int t){
if(flow<=0||s==t)return flow;
int rest=flow;
for(int i=cur[s];i;i=e[i].nxt){
int j=e[i].to;
if(dep[j]==dep[s]+1&&e[i].flow){
int tmp=dfs(j,min(rest,e[i].flow),t);
if(tmp<=0)dep[j]=0;
rest-=tmp;e[i].flow-=tmp;e[i^1].flow+=tmp;
if(rest<=0)break;
}
}
return flow-rest;
}
int dinic(int s,int t){
int ans=0;
for(;bfs(s,t);)ans+=dfs(s,inf,t);
return ans;
}
void Deal(){
S=0,T=n+m+m+1;
for(int i=1;i<=n;++i)add(S,i,a[i]),add(i,T,b[i]);
for(int i=1;i<=m;++i){
int pos=i+n;add(S,pos,c1[i]);
int posend=i+n+m;
for(int j=0;j<(int)v[i].size();++j)
add(pos,v[i][j],inf),add(v[i][j],posend,inf);
add(posend,T,c2[i]);
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",a+i),Ans+=a[i];
for(int i=1;i<=n;++i)scanf("%d",b+i),Ans+=b[i];
scanf("%d",&m);
for(int i=1,k;i<=m;++i){
scanf("%d",&k);
scanf("%d%d",&c1[i],&c2[i]);
Ans+=c1[i];Ans+=c2[i];
for(int j=1,x;j<=k;++j){
scanf("%d",&x);
v[i].push_back(x);
}
}
Deal();
printf("%d\n",Ans-dinic(S,T));
return 0;
}