独木舟(贪心)
独木舟问题
n个人,已知每个人体重。独木舟承重固定,每只独木舟最多坐两个人,可以坐一个人或者两个人。显然要求总重量不超过独木舟承重,假设每个人体重也不超过独木舟承重,问最少需要几只独木舟?
n个人,已知每个人体重,独木舟承重固定,每只独木舟最多坐两个人,可以坐一个人或者两个人。显然要求总重量不超过独木舟承重,假设每个人体重也不超过独木舟承重,问最少需要几只独木舟?
分析:
一个显然的策略是按照人的体重排序。
极端化贪心策略,最重的人要上船——如果最重的人和最轻的人体重总和不超过船的承重,则他们两个占用一条船。否则(因为假设最重的人的体重也不超过船的承重了),最重的人单独占一条船。转变为(n – 1)或者(n – 2)的问题了。
关键在于这种贪心策略是正确的。我们可以证明,最优解也可以变为这种策略。
(1) 假设最重的人和最轻的人的体重和超过了船的承重,那么最优解中,显然也是最重的人单独占一条船,所以这种情况下最优解和贪心策略是相同的。
(2) 假设最重的人和最轻的人的体重和没超过船的承重。
(2.1)如果最优解中,最重的人单独占用一条船,则可以把最轻的人也放上去,这样最优解用的船数不增加。如果最轻的人占用一条船,同样我们可以把最重的人放上去,最优解船数不增。
(2.2) 如果最优解中最重的人x和x’占用一只船(x, x’),而最轻的人y和y’占用一只船(y, y’)
我们换成(x, y) (x’,y’)
(x, y)显然没超过船的承重——因为我们假设就是如此。关键看(x’, y’)。
x’ + y’<= x’ + x 因为(x’, x)没超重,所以(x’,y’)也合法。所以换一下,最优解船数也不增。这样我们就证明了如果可能把最重的人和最轻的人放在一条船上,不会影响最优解。
反复应用这个策略,就可以把n降低为(n – 1)或者(n – 2)个人的规模,从而解决这个问题。
(2.1)如果最优解中,最重的人单独占用一条船,则可以把最轻的人也放上去,这样最优解用的船数不增加。如果最轻的人占用一条船,同样我们可以把最重的人放上去,最优解船数不增。
(2.2) 如果最优解中最重的人x和x’占用一只船(x, x’),而最轻的人y和y’占用一只船(y, y’)
我们换成(x, y) (x’,y’)
(x, y)显然没超过船的承重——因为我们假设就是如此。关键看(x’, y’)。
x’ + y’<= x’ + x 因为(x’, x)没超重,所以(x’,y’)也合法。所以换一下,最优解船数也不增。这样我们就证明了如果可能把最重的人和最轻的人放在一条船上,不会影响最优解。
反复应用这个策略,就可以把n降低为(n – 1)或者(n – 2)个人的规模,从而解决这个问题。
最后,我们来提供输入输出数据,由你来写一段程序,实现这个算法,只有写出了正确的程序,才能继续后面的课程。
输出示例
输入
第一行包含两个正整数n (0<n<=10000)和m (0<m<=2000000000),表示人数和独木舟的承重。 接下来n行,每行一个正整数,表示每个人的体重。体重不超过1000000000,并且每个人的体重不超过m。
输出
一行一个整数表示最少需要的独木舟数。
输入示例
3 6 1 2 3
输出示例
2
这道题不难,贴出来是因为这些代码是我自己写出来的,很有成就感
//独木舟问题
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n, m;
int i, j;
int weight[10000+10];
int ans=0;
void solve(int x, int y)//递归函数
{
if(weight[x] + weight[y] <= m && x<=y)//此处一定要注明递归跳出的条件
{
ans++;
solve(x+1, y-1);
}
else if(weight[x] + weight[y] > m && x<=y)
{
ans++;
solve(x, y-1);
}
}
int main()
{
scanf("%d %d", &n, &m);
for(i=0; i<n; i++)
{
scanf("%d", &weight[i]);
}
sort(weight, weight+n);
solve(0, n-1);
printf("%d\n", ans);
return 0;
}
上一屏
提交代码
回到教程
永远渴望,大智若愚(stay hungry, stay foolish)