new、delete、析构函数、自动类型转换
new
分配内存,返回指针
new 类型名T (初值列表)
功能:申请用于存放T类型对象的内存空间,并依初值列表赋以初值
结果值:
成功->T类型的指针,指向新分配的内存
失败->0(NULL)
int *pl = new int; int *pl = new int(10);
注意与malloc的区别
malloc(m):开辟m字节长度的地址空间,并返回这段空间的首地址。
sizeof(x):计算变量x的长度。
free(p):释放指针p所指变量的存储空间,即彻底删除一个变量。
delete
功能:释放指针P所指向的内存。P必须是new操作的返回值。
delete pl;
析构函数
如果构造函数使用new来分配内存,则析构函数将使用delete来释放这些内存。如果构造函数没有使用new,析构函数实际上没有需要完成的任务。在这种情况下,只需要让编译器生成一个什么都不需要做的隐式析构函数即可。
通常由编译器决定什么时候调用析构函数,代码中不会显式的调用析构函数(当然也会存在例外的情况)。如果创建的是静态存储对象,则其析构函数将在程序结束时自动调用。如果创建的是自动存储类对象,则其析构函数将在程序执行完代码块时自动被调用。如果是通过new创建的,则它将驻留在栈内存或自由存储区中,当使用delete来释放内存时,其析构函数将自动被调用。最后,程序可以创建临时对象来完成特定的操作,在这种情况下,程序将在结束对该对象的使用时自动调用其析构函数。
由于在类对象过其实析构函数将被自动调用,因此必须有一个析构函数。如果程序员没有提供析构函数,编译器将隐式地声明一个默认析构函数,并在发现导致对象被删除的代码后,提供默认析构函数的定义。
#include <cstring> #include <iostream> using namespace std; class Point { int x, y; public: // constructor Point(int _x = 0, int _y = 0); // deconstructor ~Point(); // cout << overload friend ostream& operator<<(ostream& os, const Point& p); }; Point::Point(int _x, int _y) { this->x = _x; this->y = _y; cout << "\nPoint is called!"; } Point::~Point() { cout << "\n~Point is called!"; } ostream& operator<<(ostream& os, const Point& p) { cout << "(" << p.x << "," << p.y << ")"; return os; } template <typename T> class DynamicArray { private: T* array; // pointer unsigned int mallocSize; // the length of dynamic array public: // Constructors // mallocSize=length, and the new element is content DynamicArray(unsigned length, const T& content); // Destructors ~DynamicArray(); // Copy Constructor DynamicArray(const DynamicArray<T>& anotherDA); // return the this->mallocSize unsigned int capacity() const; // for the array[i]=someT. T& operator[](unsigned int i); DynamicArray<T>& operator=(const DynamicArray<T>& anotherDA); }; template <typename T> DynamicArray<T>::DynamicArray(unsigned length, const T& content) { this->mallocSize = length; cout << endl << "new T[" << this->mallocSize << "] malloc " << this->mallocSize << "*" << sizeof(T) << "=" << this->mallocSize * sizeof(T) << " bytes memory in heap"; this->array = new T[this->mallocSize]; for (int i = 0; i < length; ++i) { this->array[i] = content; } }; template <typename T> DynamicArray<T>::~DynamicArray() { cout << endl << "delete[] array free " << this->mallocSize << "*" << sizeof(T) << "=" << this->mallocSize * sizeof(T) << " bytes memory in heap"; delete[] array; }; template <typename T> DynamicArray<T>::DynamicArray(const DynamicArray<T>& anotherDA) { // this = anotherDA; cout << endl << "Copy Constructor is called"; this->mallocSize = anotherDA.mallocSize; this->array = new T[this->mallocSize]; for (int i = 0; i < this->mallocSize; ++i) this->array[i] = anotherDA.array[i]; }; template <typename T> DynamicArray<T>& DynamicArray<T>::operator=(const DynamicArray<T>& anotherDA) { cout << endl << "operator = is called"; if (this == &anotherDA) return *this; if (this->array) delete[] this->array; this->mallocSize = anotherDA.mallocSize; this->array = new T[this->mallocSize]; for (int i = 0; i < this->mallocSize; ++i) this->array[i] = anotherDA.array[i]; return *this; } template <typename T> unsigned int DynamicArray<T>::capacity() const { return this->mallocSize; } template <typename T> T& DynamicArray<T>::operator[](unsigned int i) { return this->array[i]; } // StudybarCommentBegin int main() { int length, i; cin >> length; DynamicArray<Point> iarray(length, Point(3)); DynamicArray<Point> iarray2(iarray), iarray3(iarray2); cout << endl; for (i = 0; i < length; i++) { cout << iarray3[i] << " "; iarray[i] = Point(i, i + 1); } iarray3 = iarray2 = iarray; cout << endl; for (i = 0; i < length; i++) { cout << iarray3[i] << " "; } return 0; } // StudybarCommentEnd
永远渴望,大智若愚(stay hungry, stay foolish)