1067 Sort with Swap(0, i)
Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *)
is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
9
题意:
给出一串数字,要求对这串数字进行排序,但是排序的过程中只能使用swap(0, i),即只能够用0来和另外一个数字交换。
思路:
用index[]数组来保存每个数字的下标,即index[0] = 3,表示数字0在数组中下标为3的位置处。如果下标和数字能够一一对应的话,两者就能够形成闭环的关系。例如{2, 0, 1}。
index[0] = 1;
index[1] = 2;
index[2] = 0;
我们可以通过一个while循环来让这个闭环中的部分数字回到自己正确的位置上去。
while (index[0] != 0) { swap(index[0], index[index[0]]); }
这样的闭环在一个数组中可能不止一个(如果排序完成的话,每一个数字都会单独的构成一个闭环),所以我们要遍历整个数组,确保每一个数字都应该在自己的位置上。如果0所在的闭环已经有序,但是index[i] != i; 这时候我们应该将0,插入到i所在的闭环中,在下一轮循环中将i所在中的闭环中的数字,尽可能的放在自己应该在的位置上。如此循环,直至满足题意。
Code:
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 int main() { 6 int n, t; 7 cin >> n; 8 vector<int> index(n+1); 9 for (int i = 0; i < n; ++i) { 10 cin >> t; 11 index[t] = i; 12 } 13 int count = 0; 14 for (int i = 1; i < n; ++i) { 15 if (i != index[i]) { 16 while (index[0] != 0) { 17 swap(index[0], index[index[0]]); 18 count++; 19 } 20 if (i != index[i]) { 21 swap(index[0], index[i]); 22 count++; 23 } 24 } 25 } 26 cout << count << endl; 27 return 0; 28 }