1142 Maximal Clique
A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line Yes
if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal
; or if it is not a clique at all, print Not a Clique
.
Sample Input:
8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1
Sample Output:
Yes
Yes
Yes
Yes
Not Maximal
Not a Clique
题意:
给出一个无向图,然后再给出这个图里的几个结点判断这几个结点是不是Maximal Clique(最大团)。
思路:
暴力穷举。
Code:
#include <iostream> #include <set> #include <vector> using namespace std; bool isClique(vector<int>& v, vector<vector<int> >& grap) { for (int i = 0; i < v.size(); ++i) { for (int j = i + 1; j < v.size(); ++j) { if (grap[v[i]][v[j]] == -1) return false; } } return true; } bool isMaxClique(vector<int>& v, vector<vector<int> >& grap) { set<int> s(v.begin(), v.end()); for (int i = 1; i < grap.size(); ++i) { bool isMax = false; if (s.find(i) == s.end()) { for (int j = 0; j < v.size(); ++j) { if (grap[i][v[j]] == -1) { isMax = true; break; } } if (!isMax) return false; } } return true; } int main() { int Nv, Ne; cin >> Nv >> Ne; int v1, v2; vector<vector<int> > grap(Nv + 1, vector<int>(Nv + 1, -1)); for (int i = 0; i < Ne; ++i) { cin >> v1 >> v2; grap[v1][v2] = grap[v2][v1] = 1; } int n, k, t; cin >> n; for (int i = 0; i < n; ++i) { cin >> k; vector<int> v(k, 0); for (int j = 0; j < k; ++j) { cin >> v[j]; }if (isClique(v, grap)) { if (isMaxClique(v, grap)) { cout << "Yes" << endl; } else { cout << "Not Maximal" << endl; } } else { cout << "Not a Clique" << endl; } } return 0; }