1146 Topological Order

This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

gre.jpg

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
 

Sample Output:

3 4

 

题意:

  给出一个拓扑图判断,所给的序列是不是拓扑排序。

思路:

  用连接矩阵来存储拓扑图,判断是不是拓扑序列的时候,只需要检查还有没有指向这个节点的边。如果没有指向这个节点的边,就将所有以这个结点为起点的边删除。

 

Code:

#include <iostream>
#include <queue>
#include <vector>

using namespace std;

int main() {
    int n, m;
    cin >> n >> m;

    int s, e;
    vector<vector<int> > grap(n + 1, vector<int>(n + 1, 0));
    for (int i = 0; i < m; ++i) {
        cin >> s >> e;
        grap[s][e] = 1;
    }

    int k, t;
    cin >> k;
    bool isTopo = true;
    vector<int> ans;
    vector<vector<int> > dummy;
    for (int i = 0; i < k; ++i) {
        isTopo = true;
        dummy = grap;
        for (int j = 0; j < n; ++j) {
            cin >> t;
            for (int k = 1; k <= n; ++k) {
                if (dummy[k][t] != 0)
                    isTopo = false;
                else {
                    dummy[t][k] = 0;
                }
            }
        }
        if (!isTopo) ans.push_back(i);
    }
    cout << ans[0];
    for (int i = 1; i < ans.size(); ++i) {
        cout << " " << ans[i];
    }
    cout << endl;

    return 0;
}

 

上面的代码最后一组数据超时,又优化了一下代码,通过了全部的测试点。

#include <iostream>
#include <queue>
#include <vector>

using namespace std;

int main() {
    int n, m;
    cin >> n >> m;

    int s, e;
    vector<vector<int> > grap(n + 1, vector<int>(n + 1, 0));
    for (int i = 0; i < m; ++i) {
        cin >> s >> e;
        grap[s][e] = 1;
    }

    int k, t;
    cin >> k;
    vector<int> ans, temp;
    vector<vector<int> > dummy;
    for (int i = 0; i < k; ++i) {
        dummy = grap;
        temp.clear();
        for (int j = 0; j < n; ++j) {
            cin >> t;
            temp.push_back(t);
        }
        bool flag = false;
        for (int j = 0; j < n; ++j) {
            for (int k = 1; k <= n; ++k) {
                if (dummy[k][temp[j]] == 1) {
                    flag = true;
                    ans.push_back(i);
                    break;
                } else
                    dummy[temp[j]][k] = 0;
            }
            if (flag) break;
        }
    }
    cout << ans[0];
    for (int i = 1; i < ans.size(); ++i) {
        cout << " " << ans[i];
    }
    cout << endl;

    return 0;
}

 


参考了一下别人的代码,变更了一种解体的思路,代码也更加的简洁。

 1 #include <iostream>
 2 #include <queue>
 3 #include <vector>
 4 
 5 using namespace std;
 6 
 7 int main() {
 8     int n, m;
 9     cin >> n >> m;
10 
11     int s, e;
12     vector<int> v[n+1], in(n+1, 0);
13     for (int i = 0; i < m; ++i) {
14         cin >> s >> e;
15         v[s].push_back(e);
16         in[e]++;
17     }
18     int k, t;
19     cin >> k;
20     vector<int> ans;
21     for (int i = 0; i < k; ++i) {
22         bool flag = true;
23         vector<int> temp = in;
24         for (int j = 0; j < n; ++j) {
25             cin >> t;
26             if (temp[t] != 0) flag = false;
27             for (int it : v[t]) 
28                 temp[it]--;
29         }
30         if (!flag) ans.push_back(i);
31     }
32 
33     int isFirst = true;
34     for (int i = 0; i < ans.size(); ++i) {
35         if (isFirst) {
36             cout << ans[i];
37             isFirst = false;
38         } else {
39             cout << " " << ans[i];
40         }
41     }
42 
43     return 0;
44 }

  这种方法是通过记录每个节点的入度,根据遍历的过程中是否有入度不为0的结点来判断所给序列是不是拓扑排序。

 

posted @ 2020-04-13 17:48  Veritas_des_Liberty  阅读(240)  评论(0编辑  收藏  举报