1147 Heaps
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
Your job is to tell if a given complete binary tree is a heap.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤ 1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
Sample Input:
3 8
98 72 86 60 65 12 23 50
8 38 25 58 52 82 70 60
10 28 15 12 34 9 8 56
Sample Output:
Max Heap
50 60 65 72 12 23 86 98
Min Heap
60 58 52 38 82 70 25 8
Not Heap
56 12 34 28 9 8 15 10
题意:
给出一棵树的顺序遍历序列,判断这棵树是Max Heap或者是 Min Heap 还是Not Heap。
思路:
首先,构造出这棵树,然后通过递归判断这棵树,当时写递归的时候我都有些迷,不知道自己写的对不对,提交了之后都通过了(说明我写的是对的,哈哈哈),最后再后序遍历一下这棵树就行了。以为最后一个数后面不能有空格,又因为后序遍历的最后一个数是根节点,所以在构造的节点中加入isroot来判断是不是根节点。
Code:
#include <iostream> #include <queue> #include <vector> using namespace std; typedef struct Node* node; struct Node { int val; node left; node right; bool isroot; Node(int v) { val = v; left = NULL; right = NULL; isroot = false; } }; node buildTree(queue<int>& val) { node root = new Node(val.front()); root->isroot = true; val.pop(); queue<node> que; que.push(root); while (!que.empty() && !val.empty()) { node father = que.front(); que.pop(); node l = new Node(val.front()); val.pop(); father->left = l; que.push(l); if (!val.empty()) { node r = new Node(val.front()); val.pop(); father->right = r; que.push(r); } } return root; } void postOrderTravel(node root) { if (root == NULL) return; postOrderTravel(root->left); postOrderTravel(root->right); if (root->isroot) cout << root->val << endl; else cout << root->val << " "; } bool isMaxHeap(node root) { bool left = true, right = true; if (root->left) { left = isMaxHeap(root->left); if (root->val < root->left->val) return false; } if (root->right) { right = isMaxHeap(root->right); if (root->val < root->right->val) return false; } return left && right; } bool isMinHeap(node root) { bool left = true, right = true; if (root->left) { left = isMinHeap(root->left); if (root->val > root->left->val) return false; } if (root->right) { right = isMinHeap(root->right); if (root->val > root->right->val) return false; } return left && right; } int main() { int m, n; cin >> m >> n; for (int i = 0; i < m; ++i) { int temp; queue<int> val; for (int j = 0; j < n; ++j) { cin >> temp; val.push(temp); } node root = buildTree(val); if (isMaxHeap(root)) { cout << "Max Heap" << endl; } else if (isMinHeap(root)) { cout << "Min Heap" << endl; } else { cout << "Not Heap" << endl; } postOrderTravel(root); } return 0; }