1155 Heap Paths
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.
Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (1), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its left subtree.
Finally print in a line Max Heap
if it is a max heap, or Min Heap
for a min heap, or Not Heap
if it is not a heap at all.
Sample Input 1:
8
98 72 86 60 65 12 23 50
Sample Output 1:
98 86 23
98 86 12
98 72 65
98 72 60 50
Max Heap
Sample Input 2:
8
8 38 25 58 52 82 70 60
Sample Output 2:
8 25 70
8 25 82
8 38 52
8 38 58 60
Min Heap
Sample Input 3:
8
10 28 15 12 34 9 8 56
Sample Output 3:
10 15 8
10 15 9
10 28 34
10 28 12 56
Not Heap
题意:
给出一组由完全二叉树按照层序遍历的序列,从右到左输出由根节点到各个叶子结点的序列,并判断是大顶堆还是小顶堆。
思路:
根据序列先构建这颗完全二叉树,然后在遍历从根节点到叶子结(先右后左),遍历的过程中用一个stack存放路径上的数字,遍历的时候入栈,遍历完右,左结点之后再出栈。判断是大顶堆还是小顶堆的时候,可以用反证的方法,即:如果存在一个根节点小于子节点则一定不是大顶堆,如果存在一个子节点大于根节点则一定不是大顶堆。
Code:
#include<iostream> #include<queue> #include<stack> using namespace std; queue<int> que; stack<int> path; queue<int> temp; bool isMaxHeap = true; bool isMinHeap = true; typedef struct Node* node; struct Node { int value; node left; node right; Node() { value = 0; left = NULL; right = NULL; } }; node root = new Node(); queue<node> nodeQue; void buildTree() { root->value = que.front(); que.pop(); nodeQue.push(root); while(!que.empty()) { node parent = nodeQue.front(); nodeQue.pop(); node left = new Node(); node right = new Node(); if (!que.empty()) { left->value = que.front(); parent->left = left; nodeQue.push(left); que.pop(); } if (!que.empty()) { right->value = que.front(); parent->right = right; nodeQue.push(right); que.pop(); } } } void print(stack<int> path) { stack<int> temp; bool first = true; while (!path.empty()) { temp.push(path.top()); path.pop(); } int last = temp.top(); temp.pop(); int next; while (!temp.empty()) { next = temp.top(); if (last < next) isMaxHeap = false; if (last > next) isMinHeap = false; if (first) { first = false; cout << last; } else cout << " " << last; temp.pop(); last = next; } cout << " " << last << endl; } void travel(node root) { path.push(root->value); if (root->left == NULL && root->right == NULL) { print(path); path.pop(); return; } if (root->right) travel(root->right); if (root->left) travel(root->left); path.pop(); } int main() { int num, value; cin >> num; for (int i = 0; i < num; ++i) { cin >> value; que.push(value); } buildTree(); travel(root); if (isMaxHeap) cout << "Max Heap" << endl; else if (isMinHeap) cout << "Min Heap" << endl; else cout << "Not Heap" << endl; return 0; }
当我声明一个全局变量queue<node> nodeQue时因为结构体是在main()函数中构建的,所以在main()函数外使用queue<node> nodeQue时,会提示没有node这种数据类型。
2020-07-13 18:22:21
一种不用建树的写法:
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 int n; 6 bool isIncreasing = false; 7 bool isDecreasing = false; 8 vector<int> a(10005); 9 vector<int> v; 10 void DFS(int index) { 11 int i; 12 if (index * 2 > n && index * 2 + 1 > n) { 13 if (index <= n) { 14 cout << v[0]; 15 for (i = 1; i < v.size(); ++i) { 16 cout << " " << v[i]; 17 if (v[i] > v[i - 1]) 18 isIncreasing = true; 19 else if (v[i] < v[i - 1]) 20 isDecreasing = true; 21 } 22 cout << endl; 23 } 24 } else { 25 v.push_back(a[index * 2 + 1]); 26 DFS(index * 2 + 1); 27 v.pop_back(); 28 v.push_back(a[index * 2]); 29 DFS(index * 2); 30 v.pop_back(); 31 } 32 } 33 34 int main() { 35 cin >> n; 36 for (int i = 1; i <= n; ++i) cin >> a[i]; 37 v.push_back(a[1]); 38 DFS(1); 39 if (isIncreasing && isDecreasing) 40 cout << "Not Heap" << endl; 41 else if (isIncreasing) 42 cout << "Min Heap" << endl; 43 else if (isDecreasing) 44 cout << "Max Heap" << endl; 45 return 0; 46 }