980. Unique Paths III
On a 2-dimensional grid
, there are 4 types of squares:
1
represents the starting square. There is exactly one starting square.2
represents the ending square. There is exactly one ending square.0
represents empty squares we can walk over.-1
represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note:
1 <= grid.length * grid[0].length <= 20
My code:
class Solution { public: int uniquePathsIII(vector<vector<int>>& grid) { int ans; pair<int, int> start, end; for (int i = 0; i < grid.size(); ++i) { for (int j = 0; j < grid[0].size(); ++j) { if (grid[i][j] == 1) start = {i, j}; if (grid[i][j] == 2) end = {i, j}; } } helper(grid, start, end); return ans; } private: int ans = 0; void helper(const vector<vector<int>>& grid, const pair<int, int>& start, const pair<int, int>& end) { vector<vector<int>> temp = grid; int startX = start.first; int startY = start.second; // cout << start.first << " " << start.second << endl; // cout << end.first << " " << end.second << endl; dfs(temp, startX+1, startY, end); dfs(temp, startX-1, startY, end); dfs(temp, startX, startY+1, end); dfs(temp, startX, startY-1, end); } void dfs(vector<vector<int>> temp, int curX, int curY, const pair<int, int>& end) { if (curX == end.first && curY == end.second && check(temp)) ans++, return; if (curX < 0 || curX >= temp.size() || curY < 0 || curY >= temp[0].size() || temp[curX][curY] != 0) return; // cout << curX << " " << curY << endl; temp[curX][curY] = 3; dfs(temp, curX+1, curY, end); dfs(temp, curX-1, curY, end); dfs(temp, curX, curY+1, end); dfs(temp, curX, curY-1, end); } bool check(vector<vector<int>>& temp) { for (int i = 0; i < temp.size(); ++i) { for (int j = 0; j < temp[0].size(); ++j) { if (temp[i][j] == 0) return false; } } return true; } }; /* [[1,0,0,0], [0,0,0,0], [0,0,2,-1]] */
Approach #2: DFS. [C++]
class Solution { public: int uniquePathsIII(vector<vector<int>>& grid) { int num = 1; int sx = -1, sy = -1; for (int i = 0; i < grid.size(); ++i) for (int j = 0; j < grid[0].size(); ++j) if (grid[i][j] == 0) num++; else if (grid[i][j] == 1) sx = i, sy = j; return dfs(grid, sx, sy, num); } private: int dfs(vector<vector<int>>& grid, int cx, int cy, int num) { if (cx < 0 || cx >= grid.size() || cy < 0 || cy >= grid[0].size() || grid[cx][cy] == -1) return 0; if (grid[cx][cy] == 2) return num == 0; grid[cx][cy] = -1; int path = dfs(grid, cx+1, cy, num-1)+ dfs(grid, cx-1, cy, num-1)+ dfs(grid, cx, cy+1, num-1)+ dfs(grid, cx, cy-1, num-1); grid[cx][cy] = 0; return path; } };
Analysis:
In the first code. I don't get the correct answer. Maybe my thinking is wrong in this problem.
永远渴望,大智若愚(stay hungry, stay foolish)