109. Convert Sorted List to Binary Search Tree

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:

Given the sorted linked list: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5

 

Approach #1: C++. [recursive]

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* sortedListToBST(ListNode* head) {
        if (head == NULL)
            return NULL;
        
        ListNode* midPtr = findMiddleElement(head);
        TreeNode* root = new TreeNode(midPtr->val);
        
        if (head == midPtr) 
            return root;
        
        root->left = sortedListToBST(head);
        root->right = sortedListToBST(midPtr->next);
        
        return root;
    }
    
private:
    ListNode* findMiddleElement(ListNode* head) {
        ListNode* prevPtr = NULL;
        ListNode* slowPtr = head;
        ListNode* fasterPtr = head;
        
        while (fasterPtr != NULL && fasterPtr->next != NULL) {
            prevPtr = slowPtr;
            slowPtr = slowPtr->next;
            fasterPtr = fasterPtr->next->next;
        }
        
        // break the List Table.
        if (prevPtr != NULL)
            prevPtr->next = NULL;
        
        return slowPtr;
    }
};

  

Approach #2: Java. [recursive + convertion array]

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    private List<Integer> values;
    
    public Solution() {
        this.values = new ArrayList<Integer>();
    }
    
    private void mapListToArray(ListNode head) {
        while (head != null) {
            values.add(head.val);
            head = head.next;
        }
    }
    
    private TreeNode convertListToBST(int left, int right) {
        if (left > right) return null;
        
        int mid = left + (right - left) / 2;
        TreeNode root = new TreeNode(this.values.get(mid));
        
        if (left == right) return root;
        
        root.left = convertListToBST(left, mid-1);
        root.right = convertListToBST(mid+1, right);
        
        return root;
    }
    
    public TreeNode sortedListToBST(ListNode head) {
        mapListToArray(head);
        return convertListToBST(0, this.values.size() - 1);
    }
}

  

Appraoch #3: Python. [Inorder simualtion]

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def findSize(self, head):
        ptr = head
        c = 0
        while ptr:
            ptr = ptr.next
            c += 1
        return c
    
    def sortedListToBST(self, head):
        """
        :type head: ListNode
        :rtype: TreeNode
        """
        size = self.findSize(head)
        
        def convert(l, r):
            nonlocal head
            
            if l > r:
                return None
            
            mid = (l + r) / 2
            
            left = convert(l, mid-1)
            
            root = TreeNode(head.val)
            root.left = left
            
            head = head.next
            
            root.right = convert(mid+1, r)
            
            return root
        
        return convert(0, size-1)

  

 

posted @ 2018-12-12 18:12  Veritas_des_Liberty  阅读(176)  评论(0编辑  收藏  举报