337. House Robber III

The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the "root." Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that "all houses in this place forms a binary tree". It will automatically contact the police if two directly-linked houses were broken into on the same night.

Determine the maximum amount of money the thief can rob tonight without alerting the police.

Example 1:

Input: [3,2,3,null,3,null,1]

     3
    / \
   2   3
    \   \ 
     3   1

Output: 7 
Explanation: Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.

Example 2:

Input: [3,4,5,1,3,null,1]

     3
    / \
   4   5
  / \   \ 
 1   3   1

Output: 9
Explanation: Maximum amount of money the thief can rob = 4 + 5 = 9.
 

Approach #1: C++. [native]

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int rob(TreeNode* root) {
        if (root == NULL) return 0;
        
        int val = 0;
        
        if (root->left != NULL) 
            val += rob(root->left->left) + rob(root->left->right);

        if (root->right != NULL) 
            val += rob(root->right->left) + rob(root->right->right);

        return max(val+root->val, rob(root->left)+rob(root->right));
    }
};

  

Approach #2: Java. [native + memory]

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int rob(TreeNode root) {
        if (root == null) return 0;
        
        return helper(root, new HashMap<>());
    }
    
    private int helper(TreeNode root, Map<TreeNode, Integer> map) {
        if (root == null) return 0;
        if (map.containsKey(root)) return map.get(root);
        int val = 0;
        if (root.left != null) 
            val += helper(root.left.left, map) + helper(root.left.right, map);
        if (root.right != null)
            val += helper(root.right.left, map) + helper(root.right.right, map);
        val = Math.max(val + root.val, helper(root.left, map) + helper(root.right, map));
        map.put(root, val);
        
        return val;
    }
}

  

Approach #3: Python. [dfs + DP]

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def rob(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        def superRob(root):
            if root == None:
                return (0, 0)
            
            left, right = superRob(root.left), superRob(root.right)
            
            now = left[1] + right[1] + root.val
            
            later = max(left) + max(right)
            
            return (now, later)
        
        return max(superRob(root))

  

Analysis:

Maybe this is very hard to understand. I aways fall into the endless recursive. In those similar question we shouldn't try to image the process using our brain. 

what we can do is to think the problem if or not can resolve the big problem into a little scope with the same condition . if so we should find the end condition 

to stop the recursive and return the value(ie. 0 or someting other).

posted @ 2018-12-11 20:39  Veritas_des_Liberty  阅读(216)  评论(0编辑  收藏  举报