329. Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
Input: nums = [ [9,9,4], [6,6,8], [2,1,1] ] Output: 4 Explanation: The longest increasing path is [1, 2, 6, 9].
Example 2:
Input: nums = [ [3,4,5], [3,2,6], [2,2,1] ] Output: 4 Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
Approach #1 Java: [dfs + dp]
class Solution { public static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; public int longestIncreasingPath(int[][] matrix) { if (matrix.length == 0) return 0; int m = matrix.length, n = matrix[0].length; int[][] cache = new int[m][n]; int max = 1; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int len = dfs(matrix, i, j, m, n, cache); max = Math.max(max, len); } } return max; } public int dfs(int[][] matrix, int i, int j, int m, int n, int[][] cache) { if (cache[i][j] != 0) return cache[i][j]; int max = 1; for (int[] dir : dirs) { int x = i + dir[0], y = j + dir[1]; if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j]) continue; int len = 1 + dfs(matrix, x, y, m, n, cache); max = Math.max(max, len); } cache[i][j] = max; return max; } }
Approach #2: C++.
class Solution { public: int longestIncreasingPath(vector<vector<int>>& matrix) { if (matrix.size() == 0) return 0; int row = matrix.size(); int col = matrix[0].size(); vector<vector<int>> memory(row, vector<int>(col, 0)); std::function<int(int, int)> dfs = [&] (int x, int y) { if (memory[x][y]) return memory[x][y]; for (auto &dir : dirs) { int xx = x + dir.first; int yy = y + dir.second; if (xx < 0 || xx >= row || yy < 0 || yy >= col || matrix[x][y] >= matrix[xx][yy]) continue; memory[x][y] = std::max(memory[x][y], dfs(xx, yy)); } return ++memory[x][y]; }; int ans = 0; for (int i = 0; i < row; ++i) { for (int j = 0; j < col; ++j) { ans = max(ans, dfs(i, j)); } } return ans; } private: vector<pair<int, int>> dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; };
Approach #3: Python.
class Solution(object): def longestIncreasingPath(self, matrix): """ :type matrix: List[List[int]] :rtype: int """ def dfs(i, j): if not dp[i][j]: val = matrix[i][j] dp[i][j] = 1 + max( dfs(i-1, j) if i and val > matrix[i-1][j] else 0, dfs(i+1, j) if i < M-1 and val > matrix[i+1][j] else 0, dfs(i, j-1) if j and val > matrix[i][j-1] else 0, dfs(i, j+1) if j < N-1 and val > matrix[i][j+1] else 0 ) return dp[i][j] if not matrix or not matrix[0]: return 0 M, N = len(matrix), len(matrix[0]) dp = [[0] * N for i in range(M)] return max(dfs(x, y) for x in range(M) for y in range(N))
永远渴望,大智若愚(stay hungry, stay foolish)