H__D  

一、查找算法介绍  

  • 顺序(线性)查找

  • 二分查找/折半查找

  • 插值查找

  • 斐波那契查找

二、线性查找

  • 编写线性查找算法代码
 1 public class SeqSearch {
 2 
 3     public static void main(String[] args) {
 4         int[] arr = { 1, 2, 3, 4, 5 };// 没有顺序的数组
 5         int index = seqSearch(arr, -11);
 6         if (index == -1) {
 7             System.out.println("没有找到到");
 8         } else {
 9             System.out.println("找到,下标为=" + index);
10         }
11     }
12 
13     /**
14      * 这里我们实现的线性查找是找到一个满足条件的值,就返回
15      * 
16      * @param arr
17      * @param value
18      * @return
19      */
20     public static int seqSearch(int[] arr, int value) {
21         // 线性查找是逐一比对,发现有相同值,就返回下标
22         for (int i = 0; i < arr.length; i++) {
23             if (arr[i] == value) {
24                 return i;
25             }
26         }
27         return -1;
28     }
29 
30 }

三、二分查找

3.1、二分查找思路

  二分查找算法的前提:数组必须是有序数组
  二分查找算法思路分析(递归版):
  定义两个辅助指针:left、right ,待查找的元素在 arr[left]~arr[right] 之间
  left 初始值为 0 ,right 初始值为 arr.length - 1
  将数组分成两半:int mid = (left + right) / 2; ,取数组中间值与目标值 findVal 比较
  如果 mid > findVal ,说明待查找的值在数组左半部分
  如果 mid < findVal ,说明待查找的值在数组右半部分
  如果 mid == findVal ,查找到目标值,返回即可
  何时终止递归?分为两种情况:
  找到目标值,直接返回目标值 findVal ,结束递归即可
  未找到目标值:left > right,这样想:如果递归至数组中只有一个数时(left == right),还没有找到目标值,继续执行下一次递归时, left 指针和 right 指针总有一个会再走一步,这时 left 和 right 便会错开,此时 left > right ,返回 -1 并结束递归表示没有找到目标值

3.2、代码实现

 1 //注意:使用二分查找的前提是 该数组是有序的.
 2 public class BinarySearch {
 3 
 4     public static void main(String[] args) {
 5         
 6         int arr[] = { 1, 8, 10, 89, 1000, 1234 };
 7         int resIndex = binarySearch(arr, 0, arr.length - 1, 1000);
 8         System.out.println("resIndex=" + resIndex);
 9 
10     }
11 
12     // 二分查找算法
13     /**
14      * 
15      * @param arr     数组
16      * @param left    左边的索引
17      * @param right   右边的索引
18      * @param findVal 要查找的值
19      * @return 如果找到就返回下标,如果没有找到,就返回 -1
20      */
21     public static int binarySearch(int[] arr, int left, int right, int findVal) {
22 
23         // 当 left > right 时,说明递归整个数组,但是没有找到
24         if (left > right) {
25             return -1;
26         }
27         int mid = (left + right) / 2;
28         int midVal = arr[mid];
29 
30         if (findVal > midVal) { // 向 右递归
31             return binarySearch(arr, mid + 1, right, findVal);
32         } else if (findVal < midVal) { // 向左递归
33             return binarySearch(arr, left, mid - 1, findVal);
34         } else {
35 
36             return mid;
37         }
38 
39     }
40     
41 }

四、插值查找

4.1、插值查找基本介绍

  插值查找算法类似于二分查找, 不同的是插值查找每次从自适应 mid 处开始查找。

4.2、插值查找图解

  将折半查找中的求 mid 索引的公式 , low 表示左边索引 left ,high 表示右边索引 right ,key 就是前面我们讲的 findVal

  图中公式:int mid = low + (high - low) * (key - arr[low]) / (arr[high] - arr[low]) ;

  对应前面的代码公式:

  int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left])

  

4.3、代码实现

 1 public class InsertValueSearch {
 2 
 3     public static void main(String[] args) {
 4         
 5         int [] arr = new int[100];
 6         for(int i = 0; i < 100; i++) {
 7             arr[i] = i + 1;
 8         }        
 9         int index = insertValueSearch(arr, 0, arr.length - 1, 1);
10         System.out.println("index = " + index);
11 
12     }
13 
14     //编写插值查找算法
15     //说明:插值查找算法,也要求数组是有序的
16     /**
17      * 
18      * @param arr 数组
19      * @param left 左边索引
20      * @param right 右边索引
21      * @param findVal 查找值
22      * @return 如果找到,就返回对应的下标,如果没有找到,返回-1
23      */
24     public static int insertValueSearch(int[] arr, int left, int right, int findVal) { 
25 
26         System.out.println("插值查找次数~~");
27         
28         //注意:findVal < arr[left]  和  findVal > arr[right] 必须需要,否则我们得到的 mid 可能越界
29         // findVal < arr[left] :说明待查找的值比数组中最小的元素都小
30          // findVal > arr[right] :说明待查找的值比数组中最大的元素都大
31          if (left > right || findVal < arr[left] || findVal > arr[right]) {
32             return -1;
33         }
34 
35         // 求出mid, 自适应,额,这不就是一次函数吗
36          // findVal = arr[left] 时,mid = left
37          // findVal = arr[right] 时,mid = right
38         int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
39         int midVal = arr[mid];
40         if (findVal > midVal) { // 说明应该向右边递归
41             return insertValueSearch(arr, mid + 1, right, findVal);
42         } else if (findVal < midVal) { // 说明向左递归查找
43             return insertValueSearch(arr, left, mid - 1, findVal);
44         } else {
45             return mid;
46         }
47 
48     }
49 }

4.4、总结

  • 对于数据量较大,关键字分布比较均匀(最好是线性分布)的查找表来说,采用插值查找,速度较快
  • 关键字分布不均匀的情况下, 该方法不一定比折半查找要好

五、斐波那契查找

5.1、斐波那契数列

  • 黄金分割点是指把一条线段分割为两部分, 使其中一部分与全长之比等于另一部分与这部分之比。 取其前三位数字的近似值是 0.618。 由于按此比例设计的造型十分美丽, 因此称为黄金分割, 也称为中外比。 这是一个神奇的数字, 会带来意想不到的效果。

  • 斐波那契数列 { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } 发现斐波那契数列的两个相邻数的比例, 无限接近 黄金分割值 0.618

5.2、斐波那契查找介绍

  那为什么一定要等分呐?能不能进行“黄金分割”?也就是 mid = left+0.618(right-left) ,当然mid 要取整数。如果这样查找,时间复杂性是多少?也许你还可以编程做个试验,比较一下二分法和“黄金分割”法的执行效率。

  斐波那契查找算法又称为黄金分割法查找算法,斐波那契查找原理与前两种相似, 仅仅改变了中间结点(mid) 的位置,mid 不再是中间或由插值计算得到,而是位于黄金分割点附近, 即 mid = low + F(k-1) - 1

  对 F(k)-1 的理解  

  • 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质, 可以得到F[k]-1) =(F[k-1]-1) +(F[k-2]-1) + 1

  • 该式说明:只要顺序表的长度为 F[k]-1, 则可以将该表分成长度为 F[k-1]-1 和 F[k-2]-1 的两段 ,即如图所示。 从而中间位置为 mid=low+F(k-1)-1 ,类似的, 每一子段也可以用相同的方式分割

  • 但顺序表长度 n 不一定刚好等于 F[k]-1, 所以需要将原来的顺序表长度 n 增加至 F[k]-1。 这里的 k 值只要能使得 F[k]-1 恰好大于或等于 n 即可

  • 为什么数组总长度是 F(k) - 1 ,而不是 F(k) ?因为凑成 F(k-1) 才能找出中间值,如果数组长度为 F(k) ,而 F(k) = F(k-1) + F(k-2) ,咋个找中间值嘞?

  • 为什么数组左边的长度是 F(k-1) - 1 ,数组右边的长度是 F(k-2) - 1 ?就拿个斐波那契数列来说:{ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } ,54 = 33 + 20 + 1 ,左边是不是 F(k-1) - 1 ,右边是不是 F(k-2) - 1 ,也恰好空出了一个中间值~~~

  

5.3、斐波那契查找思路

  • 先根据原数组大小,计算斐波那契数列的得 k 值

  • 数组扩容条件是:增大 k 值(索引从 0 开始),使得数组长度刚好大于或者等于斐波那契数列中的 F[k]-1 ,我们定义临时数组 temp ,temp 后面为 0 的元素都按照数组最大元素值填充

  • 何时终止斐波那契查找?

    • 找到目标值:直接返回目标值索引

    • 没有找到目标值:low 指针和 high 指针相等或者擦肩而过,即 low >= high

  • 为什么 low == high 时需要单独拎出来?
    • low == high 时说明此时数组中只剩下一个元素(a[low] 或者 a[high])没有与目标值比较,并且此时 k 有可能等于 0 ,无法执行 mid = low + f[k - 1] - 1; 操作(k - 1 将导致数组越界)

    • 解决办法:我们在程序的最后,将 a[low] 或者 a[high] 单独与目标值 value 进行比较即可,我是通过 Debug 解决数组越界异常的,我并没有想明白,但是不把 low == high 单独拎出来,就会抛异常,哎,烧脑壳~~~改天再想

  • mid 值怎么定?mid = low + f[k - 1] - 1 :用黄金分割点确定 mid 的值

  • 左右两条路,你怎么选?

    • key < temp[mid] :目标值在黄金分割点的左边,看上面的图,应该是 k -= 1;

    • key > temp[mid] :目标值在黄金分割点的右边,看上面的图,应该是 k -= 2;

    • key = temp[mid] :找到目标值,因为数组经历过扩容,后面的值其实有些是多余的,mid 可能会越界(相对于原数组来说)

      • mid <= high :证明 mid 索引在原数组中,返回 mid

      • mid > high 时,证明 mid 索引已经越界(相对于原数组来说),返回 high

5.4、代码实现

 1 public class FibonacciSearch {
 2 
 3     public static int maxSize = 20;
 4 
 5     public static void main(String[] args) {
 6 
 7         int[] arr = { 1, 2, 3, 4, 5 };
 8         System.out.println("index=" + fibSearch(arr, 5));
 9 
10     }
11 
12     // 因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
13     // 非递归方法得到一个斐波那契数列
14     public static int[] fib() {
15         int[] f = new int[maxSize];
16         f[0] = 1;
17         f[1] = 1;
18         for (int i = 2; i < maxSize; i++) {
19             f[i] = f[i - 1] + f[i - 2];
20         }
21         return f;
22     }
23 
24     // 编写斐波那契查找算法
25     // 使用非递归的方式编写算法
26     /**
27      * 
28      * @param a   数组
29      * @param key 我们需要查找的关键码(值)
30      * @return 返回对应的下标,如果没有-1
31      */
32     public static int fibSearch(int[] a, int key) {
33         int low = 0;
34         int high = a.length - 1;
35         int k = 0; // 表示斐波那契分割数值的下标
36         int mid = 0; // 存放mid值
37         int f[] = fib(); // 获取到斐波那契数列
38         // 获取到斐波那契分割数值的下标
39         while (high > f[k] - 1) {
40             k++;
41         }
42         // 因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
43         // 不足的部分会使用0填充
44         int[] temp = Arrays.copyOf(a, f[k]);
45         // 实际上需求使用a数组最后的数填充 temp
46         // 举例:
47         // temp = {1,8, 10, 89, 1000, 1234, 0, 0} => {1,8, 10, 89, 1000, 1234, 1234,
48         // 1234,}
49         for (int i = high + 1; i < temp.length; i++) {
50             temp[i] = a[high];
51         }
52 
53         // 使用while来循环处理,找到我们的数 key
54         while (low < high) { // 只要这个条件满足,就可以找
55             mid = low + f[k - 1] - 1;
56             if (key < temp[mid]) { // 我们应该继续向数组的前面查找(左边)
57                 high = mid - 1;
58                 // 为甚是 k--
59                 // 说明
60                 // 1. 全部元素 = 前面的元素 + 后边元素
61                 // 2. f[k] = f[k-1] + f[k-2]
62                 // 因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
63                 // 即 在 f[k-1] 的前面继续查找 k--
64                 // 即下次循环 mid = f[k-1-1]-1
65                 k--;
66             } else if (key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
67                 low = mid + 1;
68                 // 为什么是k -=2
69                 // 说明
70                 // 1. 全部元素 = 前面的元素 + 后边元素
71                 // 2. f[k] = f[k-1] + f[k-2]
72                 // 3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
73                 // 4. 即在f[k-2] 的前面进行查找 k -=2
74                 // 5. 即下次循环 mid = f[k - 1 - 2] - 1
75                 k -= 2;
76             } else { // 找到
77                 // 需要确定,返回的是哪个下标
78                 if (mid <= high) {
79                     return mid;
80                 } else {
81                     return high;
82                 }
83             }
84         }
85         if(a[low]==key) {
86             return low;
87         }
88         else {
89             return -1;
90         }
91     }
92 }

 

posted on 2021-06-17 11:57  H__D  阅读(161)  评论(0编辑  收藏  举报