一、什么是CPU缓存
1. CPU缓存的来历
众所周知,CPU是计算机的大脑,它负责执行程序的指令,而内存负责存数据, 包括程序自身的数据。在很多年前,CPU的频率与内存总线的频率在同一层面上。内存的访问速度仅比寄存器慢一些。但是,这一局面在上世纪90年代被打破了。CPU的频率大大提升,但内存总线的频率与内存芯片的性能却没有得到成比例的提升。并不是因为造不出更快的内存,只是因为太贵了。内存如果要达到目前CPU那样的速度,那么它的造价恐怕要贵上好几个数量级。所以,CPU的运算速度要比内存读写速度快很多,这样会使CPU花费很长的时间等待数据的到来或把数据写入到内存中。所以,为了解决CPU运算速度与内存读写速度不匹配的矛盾,就出现了CPU缓存。
2. CPU缓存的概念
CPU缓存是位于CPU与内存之间的临时数据交换器,它的容量比内存小的多但是交换速度却比内存要快得多。CPU缓存一般直接跟CPU芯片集成或位于主板总线互连的独立芯片上。
为了简化与内存之间的通信,高速缓存控制器是针对数据块,而不是字节进行操作的。高速缓存其实就是一组称之为缓存行(Cache Line)的固定大小的数据块组成的,缓存存储数据的单元,典型的一行是64
字节。
3. CPU缓存的意义
CPU往往需要重复处理相同的数据、重复执行相同的指令,如果这部分数据、指令CPU能在CPU缓存中找到,CPU就不需要从内存或硬盘中再读取数据、指令,从而减少了整机的响应时间。所以,缓存的意义满足以下两种局部性原理:
- 时间局部性(Temporal Locality):如果一个信息项正在被访问,那么在近期它很可能还会被再次访问。
- 空间局部性(Spatial Locality):如果一个存储器的位置被引用,那么将来他附近的位置也会被引用。
二、CPU的三级缓存
1. CPU的三级缓存
随着多核CPU的发展,CPU缓存通常分成了三个级别:L1
,L2
,L3
。级别越小越接近CPU,所以速度也更快,同时也代表着容量越小。L1 是最接近CPU的, 它容量最小(例如:32K
),速度最快,每个核上都有一个 L1 缓存,L1 缓存每个核上其实有两个 L1 缓存, 一个用于存数据的 L1d Cache(Data Cache),一个用于存指令的 L1i Cache(Instruction Cache)。L2 缓存 更大一些(例如:256K
),速度要慢一些, 一般情况下每个核上都有一个独立的L2 缓存; L3 缓存是三级缓存中最大的一级(例如3MB),同时也是最慢的一级, 在同一个CPU插槽之间的核共享一个 L3 缓存。
下面是三级缓存的处理速度参考表:
从CPU到 | 大约需要的CPU周期 | 大约需要的时间(单位ns) |
---|---|---|
寄存器 | 1 cycle | |
L1 Cache | ~3-4 cycles | ~0.5-1 ns |
L2 Cache | ~10-20 cycles | ~3-7 ns |
L3 Cache | ~40-45 cycles | ~15 ns |
跨槽传输 | ~20 ns | |
内存 | ~120-240 cycles | ~60-120ns |
下图是Intel Core i5-4285U的CPU三级缓存示意图:
就像数据库缓存一样,获取数据时首先会在最快的缓存中找数据,如果缓存没有命中(Cache miss) 则往下一级找, 直到三级缓存都找不到时,那只有向内存要数据了。一次次地未命中,代表取数据消耗的时间越长。
2. 带有高速缓存CPU执行计算的流程
1.将程序和数据从硬盘加载到内存中
2.将程序和数据从内存加载到缓存中(目前多三级缓存,数据加载顺序:L3->L2->L1)
3.CPU将缓存中的数据加载到寄存器中,并进行运算
4.CPU会将数据刷新回缓存,并在一定的时间周期之后刷新回内存
三、CPU缓存一致性协议(MESI)
多核CPU的情况下有多个一级缓存,如何保证缓存内部数据的一致,不让系统数据混乱。解决方案比较常见的缓存一致性(MESI), 当然也有锁住总线。这里就引出了一个一致性的协议MESI。
MESI(Modified Exclusive Shared Or Invalid
)(也称为伊利诺斯协议,是因为该协议由伊利诺斯州立大学提出的)是一种广泛使用的支持写回策略的缓存一致性协议。为了保证多个CPU缓存中共享数据的一致性,定义了缓存行(Cache Line)的四种状态,而CPU对缓存行的四种操作可能会产生不一致的状态,因此缓存控制器监听到本地操作和远程操作的时候,需要对地址一致的缓存行的状态进行一致性修改,从而保证数据在多个缓存之间保持一致性。
1. MESI协议中的状态
CPU中每个缓存行(Caceh line)使用4
种状态进行标记,使用2bit
来表示:
状态 | 描述 | 监听任务 | 状态转换 |
---|---|---|---|
M 修改 (Modified) | 该Cache line有效,数据被修改了,和内存中的数据不一致,数据只存在于本Cache中。 | 缓存行必须时刻监听所有试图读该缓存行相对就主存的操作,这种操作必须在缓存将该缓存行写回主存并将状态变成S(共享)状态之前被延迟执行。 | 当被写回主存之后,该缓存行的状态会变成独享(exclusive)状态。 |
E 独享、互斥 (Exclusive) | 该Cache line有效,数据和内存中的数据一致,数据只存在于本Cache中。 | 缓存行也必须监听其它缓存读主存中该缓存行的操作,一旦有这种操作,该缓存行需要变成S(共享)状态。 | 当CPU修改该缓存行中内容时,该状态可以变成Modified状态 |
S 共享 (Shared) | 该Cache line有效,数据和内存中的数据一致,数据存在于很多Cache中。 | 缓存行也必须监听其它缓存使该缓存行无效或者独享该缓存行的请求,并将该缓存行变成无效(Invalid)。 | 当有一个CPU修改该缓存行时,其它CPU中该缓存行可以被作废(变成无效状态 Invalid)。 |
I 无效 (Invalid) | 该Cache line无效。 | 无 | 无 |
注意:
对于M和E状态而言总是精确的,他们在和该缓存行的真正状态是一致的,而S状态可能是非一致的。如果一个缓存将处于S状态的缓存行作废了,而另一个缓存实际上可能已经独享了该缓存行,但是该缓存却不会将该缓存行升迁为E状态,这是因为其它缓存不会广播他们作废掉该缓存行的通知,同样由于缓存并没有保存该缓存行的copy的数量,因此(即使有这种通知)也没有办法确定自己是否已经独享了该缓存行。
从上面的意义看来E状态是一种投机性的优化:如果一个CPU想修改一个处于S状态的缓存行,总线事务需要将所有该缓存行的copy变成invalid状态,而修改E状态的缓存不需要使用总线事务。
MESI状态转换图:
下图表示了当一个缓存行(Cache line)的调整的状态的时候,另外一个缓存行(Cache line)需要调整的状态。
状态 | M | E | S | I |
---|---|---|---|---|
M | × | × | × | √ |
E | × | × | × | √ |
S | × | × | √ | √ |
I | √ | √ | √ | √ |
举个示例:
假设cache 1 中有一个变量x = 0
的 Cache line 处于S状态(共享)。
那么其他拥有x变量的 cache 2、cache 3 等x
的 Cache line调整为S
状态(共享)或者调整为I
状态(无效)。
2. 多核缓存协同操作
(1) 内存变量
假设有三个CPU A、B、C,对应三个缓存分别是cache a、b、c。在主内存中定义了x
的引用值为0。
(2) 单核读取
执行流程是:
- CPU A发出了一条指令,从主内存中读取
x
。 - 从主内存通过 bus 读取到 CPU A 的缓存中(远端读取 Remote read),这时该 Cache line 修改为 E 状态(独享)。
(3) 双核读取
执行流程是:
- CPU A发出了一条指令,从主内存中读取
x
。 - CPU A从主内存通过bus读取到 cache a 中并将该 Cache line 设置为E状态。
- CPU B发出了一条指令,从主内存中读取
x
。 - CPU B试图从主内存中读取
x
时,CPU A检测到了地址冲突。这时CPU A对相关数据做出响应。此时x
存储于 cache a 和 cache b 中,x
在 chche a 和 cache b 中都被设置为S状态(共享)。
(4) 修改数据
执行流程是:
- CPU A 计算完成后发指令需要修改
x
. - CPU A 将
x
设置为M状态(修改)并通知缓存了x
的 CPU B, CPU B 将本地 cache b 中的x
设置为I
状态(无效) - CPU A 对
x
进行赋值。
(5) 同步数据
那么执行流程是:
- CPU B 发出了要读取x的指令。
- CPU B 通知CPU A,CPU A将修改后的数据同步到主内存时cache a 修改为E(独享)
- CPU A同步CPU B的x,将cache a和同步后cache b中的x设置为S状态(共享)。
3. CPU 存储模型简介
MESI协议为了保证多个 CPU cache 中共享数据的一致性,定义了 Cache line 的四种状态,而 CPU 对 cache 的4
种操作可能会产生不一致状态,因此 cache 控制器监听到本地操作和远程操作的时候,需要对地址一致的 Cache line 状态做出一定的修改,从而保证数据在多个cache之间流转的一致性。
但是,缓存的一致性消息传递是要时间的,这就使得状态切换会有更多的延迟。某些状态的切换需要特殊的处理,可能会阻塞处理器。这些都将会导致各种各样的稳定性和性能问题。比如你需要修改本地缓存中的一条信息,那么你必须将I
(无效)状态通知到其他拥有该缓存数据的CPU缓存中,并且等待确认。等待确认的过程会阻塞处理器,这会降低处理器的性能。因为这个等待远远比一个指令的执行时间长的多。所以,为了为了避免这种阻塞导致时间的浪费,引入了存储缓存(Store Buffer
)和无效队列(Invalidate Queue
)。
(1) 存储缓存
在没有存储缓存时,CPU 要写入一个量,有以下情况:
- 量不在该 CPU 缓存中,则需要发送 Read Invalidate 信号,再等待此信号返回,之后再写入量到缓存中。
- 量在该 CPU 缓存中,如果该量的状态是 Exclusive 则直接更改。而如果是 Shared 则需要发送 Invalidate 消息让其它 CPU 感知到这一更改后再更改。
这些情况中,很有可能会触发该 CPU 与其它 CPU 进行通讯,接着需要等待它们回复。这会浪费大量的时钟周期!为了提高效率,可以使用异步的方式去处理:先将值写入到一个 Buffer 中,再发送通讯的信号,等到信号被响应,再应用到 cache 中。并且此 Buffer 能够接受该 CPU 读值。这个 Buffer 就是 Store Buffer。而不须要等待对某个量的赋值指令的完成才继续执行下一条指令,直接去 Store Buffer 中读该量的值,这种优化叫Store Forwarding。
参考:https://blinkfox.github.io/2018/11/18/ruan-jian-gong-ju/cpu-duo-ji-huan-cun/